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Abstract 
 

Computer models in engineering design are representations of products or processes that may 
be prone to uncertainty, variability and error. Indeed, although a model may give accurate 
results it cannot be absolutely validated and verified for most practical applications due to our 
incomplete understanding of the world. Typically, certifying that a model is appropriate for a 
specific use is an informal, ad hoc procedure although several methodologies to provide some 
structure to this certification have previously been proposed. These methodologies are briefly 
described along with one recently developed by the authors of this paper that uses Bayesian 
Belief Nets to capture the reasoning associated with justifying model trustworthiness. As the 
application of the methodology to engineered models in an industrial setting is still in 
progress, a hypothetical case study is presented to illustrate the expected benefits. A 
significant section in this paper concerns features or attributes of modelling and simulation 
that could be used to make any assessment of trustworthiness more rigorous and objective. 
The research reported here contributes to the development of a decision support system that is 
required to advance the effective modelling of increasingly complex engineered products. 
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1 Introduction 
 

In engineering design, properties of products and processes such as function and cost may be 
described or predicted using computer models. It is widely acknowledged that any model is 
unavoidably a simplification of reality and, although it might give accurate results, it can 
never be completely exact [1], [2]. The authors of this paper contend that to comprehensively 
assess the quantitative influence of all model uncertainties, variabilities and errors requires 
exhaustive sensitivity analysis and validation, which is highly impractical if not impossible in 
almost all realistic engineering applications. Furthermore, certifying that a model is suitable 
for a specific purpose is, in practice, conducted in an unstructured, subjective manner at an 
engineer�s discretion. The purpose of the research described in this paper is to capture the 
engineer�s decision-making process in a formal and systematic manner so that as engineered 
systems grow in complexity, the most appropriate and effective use of modelling can be 
ensured.  
 
An important part of this paper presents means to make the assessment of model 
trustworthiness more objective. Hence, in Section 6, metrics or indicators associated with 
features or attributes of modelling are proposed to help quantify such an assessment. The 
preceding four sections cover topics that provide the context to the proposed metrics or 
indicators. Section 2 expands on reasons why selecting and using models is difficult. In 
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Section 3, existing methodologies to help in decision-making concerning models are briefly 
reviewed. This is followed in Section 4 by a synopsis of a methodology proposed by the 
authors of this paper aimed at reasoning about the trustworthiness of models. Then, in Section 
5, a hypothetical case study of the methodology application is presented. 

 
2 Key tasks in model selection 
 

Typically, in engineering design, there may be more than one model available for a given 
purpose. For instance, in designing engineered products where fluid mechanics are relevant, 
one could use a Direct Numerical Simulation (DNS) of the Navier-Stokes equations or a 
Computational Fluid Dynamics (CFD) model. In order to justify the use of a particular 
model, one must first understand the factors that influence its selection in preference to 
competing models. Such factors include model functionality, model fidelity and the 
availability of input data along with the cost, requirements and duration of execution. It is a 
paramount requirement that the functionality of a model fulfills the purpose for which it will 
be used. Satisfying this requirement may be aided by a structured analysis of the system 
under consideration, followed by a detailed problem description and, finally, the 
formalisation of model requirements. 
 
Having matched a model to a purpose, demonstrating model fidelity, accuracy or truthfulness 
is typically performed by conducting the tasks of validation and verification. One 
interpretation of these tasks is that the former is establishing whether the �right� model is 
being built with respect to modelling objectives whilst the latter is establishing if the model is 
being built �right� [3]. Various techniques exist for these tasks ranging from informal model 
�eye-balling� by appropriate engineers to thorough statistical analysis and comparison of 
model results with field tests [3]. However, it is widely acknowledged that absolute fidelity 
can never be demonstrated and due to our incomplete understanding of the real world, a 
model of a system that is true in all respects would be the system itself [4]. There may be a 
number of reasons why model validation is always incomplete [2]. For instance, a model is 
only validated with respect to its purpose and there is no such thing as general validity. As 
such, there may be no real world to compare against (e.g. for models of purely conceptual 
engineered products). Also, there may be different interpretations of the real world and its 
data can often be inaccurate. 
 
Model accreditation is the official certification that a model is acceptable for use for a 
specific purpose [5]. Another term used in modelling and simulation is credibility, which is a 
measure of confidence in the correctness of a model and its appropriateness to the application 
of interest [6]. In the United States, the defence community invested significant resources 
during the 1990s to improve validation, verification and accreditation of computer models. 
However, there remains no widely accepted methods available to quantify or measure fidelity 
[7]. Given the inability to demonstrate absolute model validity and the importance of the 
specifics for the application domain, it is left to subject-matter experts to evaluate, select and 
use models appropriately based upon their experience and expertise. 

 
3 Existing methodologies for model credibility assessment 
 

A number of methodologies have been developed that are intended to capture the subjective 
decision-making processes concerning model selection and use. It has been suggested that 
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with a well-developed hierarchical structure of claims, arguments and evidence, credibility 
becomes easier to demonstrate [8]. Furthermore, a hierarchy of credibility assessment stages 
for evaluating the acceptability of simulation results has been proposed [9]. It has also been 
claimed that the quality of model validation and verification activities can be represented by 
credibility indicator networks or trees [6], and a template of such a tree has been developed 
[10]. The indicators, that are measures of different model aspects, may be propagated using 
Fuzzy logic, Bayesian logic, Dempster logic and Multi-valued logic. However, only the latter 
has been actively pursued, which involves combining linguistic assessments of adjacent 
indicators using the conjunctive operator of three-valued pessimistic logic [10]. 
 
When concerned with the credibility of modelling and simulation, qualitative assessments can 
often be decomposed into a collection of quantitative assessments [11]. Fossett et al. (1991) 
propose a framework of qualitative factors for assessing military model credibility and apply 
this to three competing models [12]. Balci (2001) suggests that quantitative and qualitative 
concepts may be evaluated using hierarchies of indicators that are direct or indirect measures 
[13]. Those indicators that cannot be directly measured must be decomposed into those that 
can and, following evaluation, these may then be combined using the Analytical Hierarchy 
Process. The �Evaluation EnvironmentTM� software tool developed by Orca Computer, Inc. 
and employed since 1999 in the United States National Missile Defence Program, uses such 
indicators for model certification [13]. However, Gass (1993) raises the important 
observation that a quantitative credibility assessment referred to as an �accreditation score� 
has no meaning by itself and must be combined with a written report and sensitivity studies 
so that model users can make better decisions [14]. Consequently, Gass (1993) proposes a 
model accreditation rating system also using the Analytical Hierarchy Process that has been 
implemented in the software, �EXPERT CHOICE�.  

 
4 A Bayesian Belief Net based methodology 
 

The authors of this paper have recently developed a methodology that utilises Bayesian 
Belief Nets (BBNs) for reasoning about user confidence in models [15], [16]. A BBN is a 
directed acyclic graph that can be used for reasoning under uncertainty. Software tools exist 
in which sensitivity analysis can be automatically performed for BBNs both from cause to 
effect and vice versa. Such automated sensitivity analysis, which is not provided by software 
tools associated with the methodologies mentioned previously, enables the identification of 
the most significant sources of model concern such as uncertainties, variabilities and errors. 
While this may be intuitive when dealing with individual models, it is less so if dealing with 
complex networks of inter-operating models. Thus, our methodology facilitates more cost-
effective employment of those available resources, which are used to improve complex 
models of engineered products.  
 
Our BBN based methodology has been implemented as a prototype software tool to support 
the appropriate use of models by BAE SYSTEMS in developing increasingly complex and 
integrated military aircraft systems. A case study concerning the application of the 
methodology is in progress, which is intended to demonstrate the capture of the reasoning 
process used in modelling and simulation. The software elicits assessments on various model 
aspects, using several means, via a graphical user interface. For instance, probability wheels 
and number lines [17] are provided that enable assessments to be graphically visualised. 
Additionally, linguistic descriptors [18] within the software tool may be used to express these 
assessments instead of numerical values. Furthermore, three mathematical means of belief 
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consensus have been implemented that allow the combination of multiple engineer 
assessments. These means employ probability pools [19], Fuzzy logic [20] and Dempster 
Shafer theory [21] to provide flexibility by allowing for assessments that range in their 
vagueness. 

 
5 A hypothetical case study  
 

As the application of the BBN based methodology within BAE SYSTEMS is still in progress 
and in order to preserve company confidentiality, the benefits expected are now presented 
using a fictitious case study. Depicted below (Fig. 1) is part of a feasible breakdown of an air-
vehicle into mass components. It is proposed that this breakdown could represent a network 
of inter-operating models with varied purposes. The fictitious circumstances supposed are 
that a performance model exists for the �Air Vehicle�, which requires data from a fatigue 
tolerance model for the �Airframe Structure� and a financial cost model for the �Systems 
Equipment�. It is further supposed that the model for the �Airframe Structure� in turn 
requires data from an aerodynamic characteristics model for the �Wing� while the model for 
the �Systems Equipment� in turn requires data from a frequency response model for the 
�Flight Controls�.  
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Figure 1. Air vehicle mass breakdown / hypothetical network of inter-operating models 

 

The key objective of our methodology is to help indicate preferred modelling routes through 
the breakdown structure for a complex engineered product and this objective is facilitated in 
three ways. Firstly, one may �plug and play� with alternative models in a given network to 
determine which selections provide the most credible desired result. In this case study, the 
result could be the outcome from the fatigue tolerance model for the �Airframe Structure�. 
As an example of �plugging and playing�, one may want to compare using a vortex lattice 
method versus using a panel method as the aerodynamic characteristics model for the 
�Wing�. Secondly, it may be feasible to experiment with the network itself in order to 
achieve the most credible desired result. Assuming appropriate model compatibility, one may 
observe an improvement from, for example, bypassing certain models in the network (i.e. 
Why use N models when less than N models will suffice or even perform better?). In the case 
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study, it may be appropriate to neglect the financial cost model for the �Systems Equipment� 
and instead take cost data directly from models for the components at the bottom of the 
depicted breakdown. Finally, sensitivity analysis can be performed using some existing BBN 
tools on assessments concerning the credibility of modelling and simulation. This enables the 
identification of those aspects of modelling, which have most influence upon a result of 
interest. Hence resources that are used to improve modelling and simulation, may then be 
better employed. For the case study, in order to obtain a more credible result from the 
performance model for the �Air Vehicle�, it may be found that resources are best transferred 
from developing the frequency response model for the �Flight Controls� to developing the 
aerodynamic characteristics model for the �Wing�. Sensitivity analysis with some existing 
BBN tools can be performed at varying levels of granularity from the fine details of 
individual models to clusters of models in a network. 

 
6 Indicators for a model credibility assessment methodology 
 

The BBN based methodology developed for model credibility assessment [15], [16], as well 
as existing methodologies presented in Section 3, require subjective judgements by expert 
engineers on various aspects of modelling. The following subsections (6.1 to 6.8) concern 
means to add rigour to the process of credibility assessment. Indicators or metrics are 
proposed, which pertain to the various phases of modelling and simulation, and could assist 
in making credibility assessments more objective. Ultimately however, modelling can be 
considered an art and subjectivity cannot be totally eliminated from credibility assessments 
because these assessments are dependent on the specific circumstances [3].  
 
6.1 Indicators for non-specific phases of modelling 
 

Many model validation techniques exist and Balci (1998) attributes a wide selection of these 
to phases in the modelling life-cycle [3]. It is proposed that if such techniques are configured 
as checklists then a tally of those conducted with successful results could provide a metric for 
model credibility assessment. However, the specific choice of technique is an important 
factor affecting the extent of validation [22]. For instance, Muessig (2000) claims validation 
against field test data to be superior to validation against expert opinion (i.e. face validation), 
which in turn is superior to validation against other simulations (i.e. benchmarking) [23]. 
Hence, when evaluating the validation effort to provide a metric for credibility assessment, 
one could weight the techniques used according to their relative effectiveness. The metric 
should also consider the extent to which a validation technique has been applied with 
successful results, and one means of providing for this is now demonstrated for an example 
model (Table 1). Here, the validation techniques listed in the second column are a selection 
compiled from a number of sources [3], [24-29]. The relative effectiveness of each technique 
is described in the third column using a suggested weight, ai that ranges from 1 (low) to 5 
(high). The extent to which the validation technique has been applied to the model of interest 
with successful results is described by a proportion, bi in the fourth column. The proposed 
metric, m for the example model (Table 1) is calculated using the following expression: 
 

 
(1) 

 
 
where �n� is the number of validation techniques available and �m� will vary from 0 (no 
validation) to 1 (total validation). Hence, for the example model (Table 1) m equals 0.47.  
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Table 1. Evaluating the validation of an example model 
 

i Validation technique Effectiveness 
weight, ai 

Proportion 
applied, bi 

( )ii ba ×  

1 Animation 2 0.30 0.60 
2 Assumption validation 5 0.50 2.50 
3 Audit 4 0.90 3.60 
4 Documentation checking 1 0.95 0.95 
5 Event validation 5 0.00 0.00 
6 Extreme condition testing 5 0.75 3.75 
7 Face validation / Eyeballing 4 0.15 0.60 
8 Inspection 3 0.80 2.40 
9 Review 4 0.80 3.20 
10 Sensitivity analysis 5 0.40 2.00 
11 Spectral analysis 5 0.00 0.00 
12 Statistical analysis 5 0.55 2.75 
13 Tracing 4 0.60 2.40 
14 Turing testing 5 0.00 0.00 
15 Walkthrough 4 0.95 3.80 
 ∑ =

=

ni

1i ia = 61 ( )∑ =

=
×ni

1i ii ba = 28.55 
 
6.2 Indicators for the conceptualisation phase 
 

Conceptualisation is the initial phase in modelling and simulation that involves developing a 
specification of the physical system of interest and its environment [30]. Assessing the 
quality of this phase is often reduced to logical and structured reasoning [31]. In a military 
model for instance, when analysing the impact of aspect dependence signature on airborne 
target detection, a 6-Degree of Freedom (DoF) model would automatically be chosen over a 
3-DoF model [31]. One must specifically question whether the modelled physical entities and 
their functions, as well as the modelled environment and interactions within it, meet 
requirements sufficiently [23]. To help in making an informed judgement about the quality of 
model conceptualisation, one should both query the existence of, and inspect, relevant 
information. This includes the description and specification of the problem, formalisation of 
model requirements, and documented analysis that links the two [22]. Activity cycle 
diagrams [32] and cause-effect graphing [3] may be useful for validating conceptual models 
and the existence of these may be used as an indicator of credibility. Direct metrics for the 
quality of model conceptualisation are proposed by Pace (1998) as follows [11]: 
 

• number of �entities� modelled expressed as a fraction of those possible, 
• depth with which �entities� are represented expressed as a fraction of the number of 

possible �levels� (e.g. system of systems, system, sub-system, component), 
• �influences� upon entities expressed as a fraction of those possible, and 
• �relationships� between entities expressed as a fraction of those possible. 
 
6.3 Indicators for the mathematical modelling phase 
 

Mathematical modelling involves converting a conceptual model of a problem into precise 
analytical statements [30]. Assumptions must frequently be made during this phase  (e.g. 
modelling fluid dynamics using Bernoulli�s equation assumes steady, inviscid and 
incompressible flow). In order to assess the appropriateness of a model assumption, one 
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should question whether the effect of a counter-assumption will have any bearing on the use 
of model results [28]. As for conceptual modelling, cause-effect graphing [3] may be used as 
an indicator in evaluating the quality of mathematical modelling. In addition, Pace (1998) 
suggests �order� to be an appropriate indicator of simulation fidelity [11]. Applied to 
expressions of motion for example, 1st order relates to assuming fixed velocity, 2nd order 
relates to assuming variable velocity but fixed acceleration, 3rd order relates to assuming 
variable acceleration but a fixed rate of change of acceleration and so on.  
 
6.4 Indicators for the discretisation phase 
 

Discretisation involves converting the mathematical model from a calculus problem to an 
arithmetic problem [30]. Suitable metrics to characterise this phase are values associated with 
attributes of model precision. Such metrics include interpolation intervals and both temporal 
and spatial step lengths [11]. 
 
6.5 Indicators for the computerisation phase 
 

Rules of thumb have been suggested for evaluating the quality of model computerisation. For 
instance, structured programming that is modular or object oriented has been proposed as an 
indicator of high quality [26], [27]. Also, Sargent (1999) states that models developed in a 
�special-purpose simulation language� typically have fewer errors than those developed in a 
�general-purpose simulation language�, which in turn typically have fewer than those 
developed in a �general-purpose higher level language� [29]. A range of techniques exist for 
the verification of model computerisation [3], [26], [27] and one might enumerate techniques 
as a metric to assess the quality of this phase of modelling. With respect to executable 
computer-based models, Whitner and Balci (1989) present a detailed taxonomy of 
verification techniques based on effectiveness [33]. Such a taxonomy could be developed to 
provide a metric for the quality of model computerisation in a manner similar to that shown 
previously in Table 1. 
 
6.6 Indicators for the parameter data selection phase 
 

In assessing the quality of model parameter data, one must consider the appropriateness and 
error-freeness of both embedded data (e.g. Boltzmann�s constant) and run-time or scenario-
specific data [23]. The use of high quality parameter data may be claimed if taken from 
reliable and authoritative data sources [23], [32]. The �Confidence Levels in Model 
Behavior� (CLIMB) process was developed to categorise data for missile models according 
to accuracy [22]. Such categories could be developed to provide metrics for the quality of 
parameter data. If the error or variability in model parameter data is known, for example by 
statistical distribution, then there is a range of techniques for assessing their aggregated 
influence on model output [16]. The effect of data transformations such as unit conversions, 
co-ordinate transformations and pre/post processing algorithms [23] may be similarly 
assessed. The metrics that these assessments provide can help in quantifying model fidelity 
[11], [31]. 
 
6.7 Indicators for the numerical solution phase 
 

The adequacy of the numerical solution of a computer model can be confirmed by manual 
calculation and by verification against a known analytical solution [27]. In the absence of an 
analytical solution, one could utilise suitable metrics of model precision such as round-off 
procedures [11] and convergence tolerance settings. 
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6.8 Indicators for the results representation and interpretation phase 
 

The effectiveness with which model output is interpreted is largely influenced by the skill of 
the model user. However, features of output display can be of significance particularly for 
visual models such as flight simulators. Possible metrics concerning the phase of results 
representation include brightness, contrast, resolution of detail, pictorial cues, frame update 
rate, atmospheric effects, visual dynamic effects and depth compression [4], [11]. 

 
7 Conclusions 
 

As engineered products increase in complexity, it becomes an onerous task to certify models 
of their behaviour as being credible. The need arises for the formal capture of the reasoning 
process employed by the modeller using diverse factors such as the opinions of subject-
matter experts and relevant indicators or metrics. Existing methodologies to help capture this 
process were briefly described as well as a BBN based methodology and supporting software 
recently developed by the authors of this paper. Indicators or metrics associated with the 
various stages of modelling and simulation were then suggested to provide more rigour to the 
assessment of model credibility. Other considerations in modelling, such as the financial cost 
of simulations, make model selection a difficult task. Indeed a compromise must frequently 
be made between the often-competing criteria of the fidelity of a model and the cost of 
executing it. These considerations contribute to �total quality� [3] or �acceptability� [13] of 
models. The management of information concerning these aspects has been claimed by some 
to be a task that can be eased by computer support [3], [34], [35]. Hence the authors of this 
paper are developing a decision support system to enable the continued effective use of 
modelling and simulation in engineering design as more complex models arise. 
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