
INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN  
ICED 03 STOCKHOLM, AUGUST 19-21, 2003 

 

CHARACTERISTICS OF A MULTI-VIEWPOINT FEATURE-BASED 
DESIGN AUTOMATION ENVIRONMENT 

KwangHoon Lee and Chris McMahon 

Abstract 
This paper describes an approach to viewpoint-dependent feature-based modelling in 
computer-aided design developed for the purposes of supporting design automation.  The 
approach uses a combination of a multi-level modelling approach and two stages of mapping 
between models.  The multi-level model approach is implemented in a three-level architecture 
involving (1) a feature-based description for each viewpoint, comprising a combination of 
form features and other features such as loads and constraints for analysis, (2) an executable 
representation of the feature model, for example, in the form of an executable macro file or 
object model and (3) an “evaluation” of the feature model obtained by executing the 
representation defined in (2) in a CADCAM system.  The mappings involved in the system 
comprise firstly, mapping between the level (1) feature representations associated with 
different viewpoints, for example for the geometric simplification and addition of boundary 
conditions associated with moving from a design model to an analysis model, and secondly 
mapping between level 1 and level 2 representations in which the feature model is 
transformed into the executable representation.  Because an executable representation is used 
as the intermediate layer, then the low level evaluation can be active – for example an analysis 
model which is evaluated and for which results are output. 

Keywords: design representations, computer-aided design, feature-based design, design 
automation, distributed design 

1. Introduction 
A number of computer-aided design research activities have focused particularly on the 
problems involved when integrating various previously separate systems and representations 
into a framework that covers all major aspects of the automation of the product development 
phases.  During the design process, different engineers take information about the design, and 
manipulate it in order to generate the new information required for the development of the 
new product.  Various engineering representations of the designed artefact are created and 
used for different engineering tasks.  These represent, for example, a manufacturing 
engineering viewpoint, a structural analysis viewpoint, a process engineering viewpoint, and 
so on. These representations for the various engineering requirements are obtained by 
translation between engineering models, augmenting them as necessary with information 
specific to the specialist viewpoint [1].  

The participants in the engineering design process produce information that represents 
modelled properties of the design.  These modelled properties may be divided into two main 
classes: design parameters that describe the shape, dimension, surface finish and other 
attributes of the product for subsequent manufacture, typically represented in drawings, 
diagrams and CAD models; and performance parameters that describe the characteristics and 
behaviour of the products subject to an external environment that applies loads and other 



 2

boundary conditions to the products [2].  The design parameter model is what the design 
engineer produces, generally today in the form of a CAD model.  Specialist engineers, 
generally using further models –such as Finite Element models – that are used to assist in 
their estimation, estimate the performance parameters during the design process.  The 
additional models may be computer models, mathematical models, graphical models and even 
physical prototypes and test pieces. 

A significant issue in design is the amount of time and effort that is spent first of all by design 
engineers in creating CAD models of design parameters and then by specialist engineers in 
creating their models, based on the design parameter models, so that they may make their 
specialist judgements.  There are various reasons why the work is time-consuming: creating a 
new design model from geometric primitives can be quite laborious; the modification that is 
often needed to the design parameter model by a specialist – for example to simplify or 
approximate the model – can also involve a lot of effort.  The manipulation of the model also 
has to be done at the level of low-level geometric entities such as faces and edge loops, and 
this contributes to the time taken.  However, if model representations can be used that 
facilitate the automatic or semi-automatic translation between representations, then a good 
deal of the required effort may be eliminated.  Furthermore, if a high-level representation is 
used, then it may be possible to create design models very rapidly, thus allowing thorough 
exploration of the design space.  An approach to such a high-level representation is multi-
viewpoint feature-based design – computer-aided design using features that are compatible 
with multiple engineering viewpoints. 

In this paper a multi-viewpoint feature-based design approach for an automated design 
environment will be described.  The work is a continuation of that presented in [3].  A brief 
overview of each of the elements of the system will be provided. The system approach is 
based on building a feature-based model of a design and mapping to executable 
representations of secondary viewpoint models.  The approach to construction of models 
using the design-by-features approach involves controlling execution of a commercial 
CADCAM system through commands from the system’s macro language with dynamic 
modification of the macro language by an external control program to allow different artefact 
parameters to be varied.  Variable parameters used to describe a design feature model are 
defined and a probabilistic assessment of a design evaluated simply by repeatedly varying the 
values of the describing parameters. 

2. Research background 

The objectives of the work presented here were, firstly, to explore whether, by using features 
to construct design models and as a basis for specialist models, the models could be 
constructed much more simply so as to avoid lengthy initial construction, and to avoid time-
consuming conversion between models. Secondly, it was wished to examine whether the 
construction and manipulation of features could be carried out programmatically so that 
complete design and analysis procedures might be incorporated into optimisation or 
probabilistic analysis processes.  Each of these aspects will now be reviewed. 

2.1 Approaches to multiple viewpoint feature-based design 
Feature-based design 
In feature-based design, models of the designed artefact are represented as collections of 
features - model elements that have engineering significance [4].  Feature based approaches 
encompass both design using features (design-by-features) and automatic identification of 



 3

features on a conventional geometric model.  In design by features, features are entities that 
can be modified by changing feature parameters, typically related to the geometric form of the 
feature.  Feature-based design is regarded as a promising approach to design representation 
for various product development phases. Nevertheless, improvements are sought through 
increased capability for design (e.g. especially geometry specification and modification of 
complex shapes such as castings or pressed panels) and a better ability to act as the integration 
for manufacturing applications such as process planning, assembly planning and analysis.  

Design by features comprises all operations that are part of the process of creating a feature-
based model and transformation of the model to different applications.  The approach 
provides two principal advantages in the design process in that (1) the designer can store in 
the feature model non-geometric information which is available at the design stage and can 
later be applied to various engineering domains, and (2) features can be used to access 
information associated with particular feature types during the design process. This makes it 
possible to implement advanced applications such as concurrent design, real time geometry 
modification, and integration with other applications. The general purpose of the modelling 
methodology is the support of methods for automatically generating models for carrying out 
specialist activities, especially engineering analysis tasks.  In general, however, the geometric 
and other attributes of a component may be combined into features in a variety of ways that 
reflect the needs of different design and manufacturing applications at different product 
development phases.  This is currently a problem in feature representation: different 
specialists may choose to use different feature sets for the same part because they assign 
different engineering meaning to the elements of the part.  This is known as viewpoint 
dependency.  In this regard there is a need for feature definitions, or for a method of mapping 
or converting features, that allows wide coverage of different viewpoints in the design 
process. 

Representations for viewpoint-dependent models  
There have been a number of approaches to the representation of multiple viewpoints in 
design by features.  An algorithm has been developed by Jha [5] that propagates feature 
modifications automatically across different domains.  In this “feature-tree” algorithm, 
multiple feature models of the part are maintained, and changes made in one feature model 
are propagated to other feature models of the same part. The feature-tree makes available to 
the propagation algorithm a history of the extraction process that results in the multiple 
feature models. The modifications are however limited to the geometry (not the topology) of 
volumetric features.  A mechanism for maintaining consistent product views in a distributed 
product information database was proposed by Hoffmann [6]. In his approach, a single 
repository called a “master model”, in which all-relevant product data resides was proposed 
for the integration of different product information domains while the other views must be 
updated to maintain consistency. The architecture builds on different applications distributed 
over different CAD or CAM systems, and a master model is also used to associate the model. 
Bronsvoort [7] proposes a multiple viewpoint feature modelling approach to overcome the 
shortcomings that current multiple viewpoint modelling is done only for form features. The 
approach supports conceptual design, assembly design, part detail design and manufacturing 
planning by providing a viewpoint-dependent interpretation of the product for each of these 
applications. De Kraker [8] describes a multi-level model approach in which viewpoint 
dependent models are defined at three levels: at the highest level is a feature-based 
description; at the intermediate level features are described by their canonical shape as a 
CSG-tree; at the lowest level is the evaluated geometry for the model. 



 4

2.2 Design automation. 
Achieving design automation involves the integration of the information processing required 
by the various disciplines involved at the different stages of the design process [3]. For well-
established designs, e.g. in the automotive industry, it may be possible to model the flow of 
information between different disciplines and stages, and to use these models to assist in the 
automation of aspects of the design process. For example, the optimisation or probabilistic 
design assessment of an engineering part may involve generation of a geometric model of the 
part, use of the model to generate an analysis model, and use of the analysis model to produce 
information to guide the modification of the geometric model. However, using current 
technology, considerable human input is needed to set up geometric models or parametric 
models for use in such activities, and then to use these models in the preparation of analysis 
models for the activities. 

A major issue in reducing the human effort required in information processing in design is the 
use of model representations that are sufficiently semantically rich.  Feature based modelling 
is regarded as a key technology in this respect.  Computer-aided design with feature 
representation as the mechanism may be used to define and maintain product design 
information for analysis and simulation of products from the early stage of the product 
development cycle. By using a feature-based description of engineering parts, the automation 
of such processes as optimisation and probabilistic design may be assisted – the human input 
required in the modelling of the geometry and then in the preparation of the analysis model 
may be very much reduced. 

Distributed design 

Competitive markets require rapid product development, and product development over 
computing networks is a new development made in modern engineering design. Design today 
is undertaken in a distributed fashion by teams that may be on multiple sites. The computing 
environments used are also distributed, with computers connected in networks that allow 
them, in principle, to communicate with other machines all over the world.  Software 
approaches have been developed to exploit these distributed networks. In particular, processes 
may be executed on one computer under control of another computer, allowing different 
modelling, analysis and simulation components to be distributed over a network with 
heterogeneity of computer platforms and languages, and to be executed as desired to achieve 
design automation by automatically invoking processes in an appropriate order. Hence, 
computationally expensive computing activities such as optimisation and probabilistic design 
may be distributed in the most appropriate way. For this reason, large-scale design work 
related to the product development life cycle is moving to distributed computing.  The 
distributed system can be thought of as a design environment that provides support for 
collaboration in the product development stages.  However, in order to coordinate such 
activities, a mechanism for coordination of processes in a distributed working environment is 
required.  

Tool Management Systems (TMS) 
A TMS is a system for handling the flow of data and the control of multi-process execution 
for distributed design activities.  It achieves this by invoking user-specified tools as necessary 
and by maintaining consistent versions of data in some problem-solving application. 
Generally, TMS employ an object-oriented approach and use such mechanisms as CORBA 
[9] or other distributed object system for data exchange and coordination. Examples of TMS 
are NetBuilder [10], BossQuattro [11] and ADAPRES_NET [12]. 



 5

In a TMS, a standard interface to the controlled applications should be provided to allow them 
to be invoked and for data transfer to take place.  The terms “tool integration” and “tool 
encapsulation” are used to describe alternative tool control procedures. Tool integration 
describes the process by which tools are directly executed under control of a TMS, for 
example via the tool’s API, source code or some other mechanism.  In this way, the tool can 
directly obtain data to operate.  In tool encapsulation, software wrappers between the TMS 
and the controlled tools provide an interface layer through which tool control and data 
exchange takes place. 

Coordination of the controlled tools is typically based on a network model of the required 
sequence of tool executions.  For example, ADAPRES_NET effects the control using a Petri 
net model of the interactions.  TMS typically provide inbuilt control mechanisms allowing 
optimization and sensitivity analyses to be carried out under the control of the TMS. 

3. Research methodology. 

3.1 Multi-level feature mapping approach to design automation. 
In order to use features to construct design models and as a basis of specialist models, it is 
necessary to be able to specify feature models and their manipulation into different viewpoints 
in such a way that they may be constructed and manipulated easily.  Ideally, some sort of 
language would be provided for the specification of features, and of the way in which they are 
assembled together into a model and then manipulated for different applications.  This 
language would provide mechanisms for the definition of features, for the combination of 
features into a model, for the manipulation of features (simplification, approximation etc.) and 
for the association of such aspects as loads and boundary constraints with a feature model.  
These mechanisms eventually have to be translated into operations for a CAD system.  So, for 
example, a feature model of a link, which comprises an “eye”, a “shank” and another “eye” 
needs to be translated into the system commands needed to construct these features.  When 
the model is then manipulated into a FE model, then there may need to be simplification or 
approximation of the feature models and then loads and boundary conditions need to be 
applied to the features of the design model. In practice this means firstly that a different 
feature model may need to be created with alternative geometric representation of the features 
(to account for the simplification/approximation) and secondly that loads and boundary 
conditions need to be applied to the features, or more precisely to the faces of the features.  
The viewpoint-dependent manipulation should involve execution of CAD system commands 
in some way such that the appropriate geometric entities and FE entities are created. 

Viewpoint dependency means that the features needed and the way in which they are defined 
may vary with the engineering viewpoint.  Feature mapping is therefore seen as an important 
requirement for the flexibility of feature-based design systems including multiple viewpoint 
modelling [2]. The approach that has been adopted in this work has been to develop an 
approach for viewpoint-dependent feature modelling, called Dynamic Feature Evaluation 
[DFE] and implemented using a commercial CADCAM system (SDRC I-DEAS) in a 
distributed automation environment [13].  The approach uses a combination of mapping 
between representations and a multi-level modelling approach, similar to that employed by de 
Kraker [8], but here comprising: 

1. A feature-based description for each viewpoint, comprising a combination of form 
features and other features such as loads and constraints for analysis. 



 6

2. An executable representation of the feature model, for example, in the form of an 
executable Macro file or object model. 

3. An “evaluation” of the feature model obtained by executing the representation defined 
in (2). 

Figure 1. Architecture and mappings of the multi-level feature-based modelling system 

This three level architecture is shown in figure1, and there are two sets of mappings 
associated with this architecture: firstly, mapping between the level 1 feature representations, 
for example for the geometric simplification and addition of boundary conditions associated 
with moving from a design model to an analysis model, and secondly mapping between level 
1 and level 2 representations in which the feature model is transformed into the executable 
representation. Note that because an executable representation is used as the intermediate 
layer, then the low level evaluation can be active – for example an analysis model which is 
evaluated and for which results are output. 

The work reported here involves both mappings, although it has concentrated on the second of 
the two mappings.  It is assumed that techniques such as that described by Kugathasan [14] 
would be used for complex mapping of form features between viewpoint representations.  
Simple mapping, limited to addition of analysis features, will be described.  The question that 
has been primarily addressed concerns how feature models should be mapped to executable 
intermediate representations, and then how these representations may be used in design 
automation applications.  This has been done through experiments that explore the automated 
construction of feature models from different viewpoints. 

3.2 Design automation with a feature-based model. 
Automated construction of feature models requires the feature description to be translated into 
an executable set of commands for the CAD system to evaluate.  It was considered that this 
could be done in a number of ways: by instructing a CAD system application to execute 
commands one-by-one, by translating the feature description into code for the system’s API to 
execute, or by translating it into the system’s macro language (that in the case of I-DEAS is 
called Program Files and uses command mnemonics for automated system operation).  All 



 7

three approaches were explored, but the first method is cumbersome, the system used did not 
support a full set of finite element operations through its API, and therefore the mnemonic 
approach was concentrated on.  It is that approach that will be described here. 

The use of a macro language for the evaluated feature model is achieved by first creating 
mnemonic sequences for features and for feature operations either by writing them directly or 
by capture of interactive commands and then editing the captured files as required.  Mapping 
from feature model to macro language is then achieved by creating a file combining code 
segments corresponding to features and other operations.  Figure 2 shows the code segments 
corresponding to the development of a finite element model of a bicycle crank. 

Figure 2. Macro operations for the FE model of a bicycle crank 

In this example, a finite element analysis feature model is represented as a collection of 
executable commands describing feature modifications, feature parameters and locations, and 
then each step of the mapping is described in terms of operations on the whole part (e.g., 
meshing, materials), or on named elements of features (e.g. loads, constraints applied to 
specified faces), all described using executable mnemonic commands.  In this way, repetitive 
design automation tasks (e.g. repeatedly constructing models for the purposes of optimisation) 
may be carried out by writing, modifying and executing mnemonic files. 

A further advantage of using a macro file approach is that model variables may be modified 
easily by editing the file, and that this may be done programmatically. Distribution of 
execution may also be achieved easily, simply by instructing a remote workstation to execute 
a program file.  This approach to remote execution also reduces the necessary network traffic. 



 8

There are negative aspects of using macro files.  The most serious difficulty (shared with the 
other approaches) was that, for the system used, it was not possible to use user-supplied 
persistent names for geometric entities (e.g. faces of features) to be used in later manipulation 
of the model.  System-supplied names could be used, but these were not persistent and 
keeping track of them was difficult.  Also, the mnemonic files are difficult to read, and macro 
execution is potentially much slower than programmatic execution using an API.  
Nevertheless, unless absolute performance is an issue (and it may be in some optimisation 
applications), macros offer a convenient way of constructing feature models. 

Macro and command-by-command approaches also require different ways of arranging for 
the distributed execution of tasks.  In each approach presented here the architecture is that a 
central computer application works at feature model level, and generates and accumulates the 
data used for example for optimisation or probabilistic analysis.  Construction of the CAD 
models, execution of finite element analyses and so on is carried out by CAD system software, 
either on the same or separate workstations.  The nature of the interaction is different between 
the two applications however.  In the command-by-command approach there is continuous 
communication between the central controller and the CAD system command server, and the 
controller passes a stream of commands to the remote processes.  In the macro approach the 
central controller again deals with the optimisation or probabilistic analysis data, and uses this 
data to create or edit macro files, which it then passes for execution to the remote process.  In 
this way the process is more asynchronous, and the central controller could manage many 
remote processes simultaneously. 

An example of repeatedly evaluated part geometry is shown in Figures 3 and 4, which show 
the features and key parameters (values and standard deviations) respectively for a connecting 
rod.  In order to explore the likely weight variation of the connecting rod owing to variation in 
the dimensions, models of connecting rods were repeatedly constructed for different values of 
the feature parameters in order to define a response surface for the weight of a rod, and then 
this response surface was used in a Monte Carlo simulation to compute the weight of the rod 
as a probability distribution function. 

Figure 3. Form features of Connecting Rod 

4. Conclusions 

The experiments that were carried out demonstrated how features models could be created 
programmatically, using a variety of interfaces to a standard CADCAM system.  Initially, 
purely design features were used, and then it was shown how a feature-based model could be 
taken and extended to another viewpoint (e.g. a finite element model or geometric analysis 



 9

model) using the same approaches.  From these experiments, it was understood not just how 
to take one feature configuration and develop another viewpoint, but also in principle how 
different parts can be modelled using the same feature set and again further viewpoint models 
developed for these parts.  The outcome of the work was a multi-stage system for the 
construction and execution of feature-models comprising: 

• parametric design to construct generic features; 

• complete feature definitions for design, finite element analysis and geometric analysis 
viewpoints; 

• design by features for the automated design method for all feature types by a macro 
approach, operated in a distributed design environment in which different workstations in a 
network can create models from different viewpoints; 

• a multi-level mapping operation for feature description and executable representation; 

The work has shown that a framework for collaboration allowing the generation of viewpoint 
models for different product development stages is possible, but that in order to achieve this it 
is necessary to properly structure product information flow, and enhancements to CAD 
environments are needed, in particular a capability to attach persistent names to geometric 
primitives of features, if a full range of functions are to be supported.  Since one of the main 
advantages from using feature technologies over conventional geometric modelling is the 
ability to associate functional and engineering information with aspects of product models 
these enhancements will be important if the full benefits of computer-aided engineering are to 
be achieved. 

 

Figure 4. Probabilistic design viewpoint of geometric analysis model.  

References. 
[1] MG-IT Coordonnateur: Lèon, J.C., “Contribution to a multi-views, multi-

representations design framework applied to a preliminary design phase”, IDMME ‘98, 
2nd International Conference on Integrated Design and Manufacturing in Mechanical 
Engineering, Compiè- France, May 27-29, 1998 

[2] Suh, N. P. “The Principles of Design”, Oxford University Press, New York, 1990 



 10

[3] Lee, K.H., Kaymaz, I., McMahon, C.A., “The use of distributed viewpoint-dependent 
feature-based modelling and the response surface method in design assessment”, 
International Conference on Engineering Design ICED, Glasgow, August 21-23, 2001 

[4] Shah, J.J., and Mäntylä, M., “Parametric and Feature-based CAD/CAM”, Wiley-
Interscience, New York, 1995 

[5] Jha, K. and Gurumoorthy, B., “Automatic propagation of feature modification across 
domains”, Computer-Aided Design, Vol. 32, pp 691-706, 2000 

[6] Hoffmann, C.M., and Joan-Ariyo, R., “Distributed Maintenance of Multiple Product 
Views”, Computer-Aided Design, Vol. 32, pp.421-431, 2000 

[7] Bronsvoort, W.F., Noort, A., van den Berg, J., and Hoek, G.F.M., “Product 
development with multiple-view feature modelling”, CD-ROM Proceedings of the IFIP 
Conference on Feature Modelling and Advanced Design-For-The-Life-Cycle Systems, 
12-14 June, Valenciennes, France, 2001 

[8] De Kraker, K., D., Maurice, and Bronsvoort, W. F., “Multi-way feature conversion to 
support concurrent engineering”, Solid Modelling ’95, third symposium on solid 
modelling and application, Salt Lake City, Utah, May 17-19, 1995 

[9] Henning, M. and Vinoski, S, “Advanced CORBA(R) Programming with C++”, 
Addison-Wesley, Reading, MA, 1999 

[10] Dabke, P., Cox, A., and Johnson, D., “NetBuilder: an Environment for Integrating Tools 
and People”, Computer-Aided Design, 30, 1998, pp.465-472 

[11] Samtech, “BOSSquattro”, http://www.samcef.com/pdf/boss-va.pdf 

[12] Kaymaz, I., “An Adaptive Response Surface Method for Engineering Analysis”, 
Department of Mechanical Engineering, University of Bristol, UK, PhD Dissertation, 
2001 

[13] Lee, K.H., “Engineering design representation by feature-based design in design 
automation – multiple viewpoint dependent models in product development” 
Department of Mechanical Engineering, University of Bristol, UK, PhD Dissertation, 
2002 

[14] Kugathasan, P., “A feature-based approach to design information management – 
Multiple viewpoint dependent models for the product introduction process”, 
Department of Mechanical Engineering, University of Bristol, PhD Dissertation, 1998 

Chris McMahon 
University of Bath 
Department of Mechanical Engineering 
Bath  BA2 7AY 
UK 
Tel: Int +44 1225 384026 
Fax: Int +44 1225 826928 
Email: c.a.mcmahon@bath.ac.uk  
URL: http://staff.bath.ac.uk/enscam/ 

KwangHoon Lee 
Kwangju Institute of Science and Technology          
(K-JIST), Department of Mechatronics 
1 Oryong-dong, Puk-gu 
Kwangju, 500-712 
Republic of Korea                                                     
Tel: Int +84 11 9147 8555                                     
Email: mekl2002@intizen.com 

 


