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Abstract
A modification-based framework for computational design synthesis augmented by machine
learning is presented. The framework allows a wide range of engineering design problems to
be addressed via a machine learning based search algorithm with minimal required adaptation
of the search heuristics. Search is accomplished via two agents, a ‘data modeller’ and a
‘modification advisor’, that work together to guide a generate-and-test-oriented search with
suggested actions based on past observation of the search. A proposed implementation of the
search algorithm is discussed and the results of its application to two design examples are
presented. Implications of the method for engineering design are discussed.
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1. Introduction

Engineering design is increasingly being influenced by the proliferation of computer tools in
the design environment. CAD systems that previously supported human efforts through
design representation and visualisation are being supplemented with optimisation algorithms
that automate various routine design tasks [1]. In some fields, notably electronics, systems are
emerging of such complexity that computer-aided design synthesis is essential for success [2].
With advances in these areas yielding clear benefits for practitioners, computational design
synthesis is finding application in more diverse areas, such as civil engineering [3] and
mechanical engineering [4].  The primary aim of computational design synthesis is to achieve
the most beneficial and innovative design outcomes with the lowest possible time investment.
Over the years, a number of procedures have emerged as suitable candidates for solving
difficult design problems but their successful application is often dependent on the nature of
the design problem and its objectives. The growth of the field is therefore limited, to some
extent, by the ability of developers to adapt existing heuristic search algorithms, such as
simulated annealing (SA) and evolutionary strategies, such as genetic algorithms (GAs) to
diverse practical problems. Of the large variety of approaches for computational design
synthesis, we choose to focus on techniques that follow a bottom-up approach, forgoing the
use of expert knowledge to favour the possible generation of novel, unbiased design solutions.
Although techniques such as SA and evolutionary strategies support such ideals when applied
in conjunction with a suitable design representation, their application to the range of practical
problems often encountered in industry is not always easy and often computationally
expensive. Practical scenarios, for example, often require the investigation of multiple design
objectives to determine design trade-offs [5] requiring adaptations of SA- [6] and GA-based
techniques [7]. A further complication arises from the nature of the design constraints and the
way in which the search algorithm is able to search the design space. Standard GAs, for



example, are not well suited to problems where the number of design variables change
throughout the synthesis process. As a result of these practical concerns, much research that
goes into computational design synthesis revolves around how the researcher managed to
adapt a known heuristic method to a particular problem through development of a suitable
design space model and appropriate modification of the chosen heuristic method.

This research attempts to address a wide range of practical design scenarios by defining a
modification-based design framework where design solutions develop through the successive
application of modification operators to the existing design. This formalism encompasses a
large number of potential practical scenarios while requiring only minimal effort to put into
effect. To operate within the modification-based framework, a general method for design
synthesis with the aid of machine learning (ML) is presented. This is intended to guide the
solution search using past experience that is self-learnt by on-going observation of the
synthesis process. The search framework, summarised in Figure 1, comprises two agents. The
‘data modeller’ accumulates data about the synthesis problem through observation and learns
relevant relationships between the design objectives, constraints and modification operators.
The ‘modification advisor’, uses the knowledge elucidated by the data modeller to advise
appropriate modifications to the current design taking into account various potential factors,
including the current objective values, the recent history of modifications made and the recent
progress made in the search. Design modifications are thereby favoured that are more likely
to benefit synthesis. With increased experience, the data modeller can extend its knowledge
base and allow the modification advisor to make a greater contribution to the search. 

2. The modification-based design synthesis framework
Modification-based design describes a process by which one or more design solutions are
gradually developed from an initial design through successive applications of modification
operators. Typically, the design synthesis algorithm seeks to implement modifications that
lead to improved designs, in terms of one or more objectives, after a number of modifications
have been made. Because implementation of the modification operators and evaluation of the
resulting new designs demand computational resources, it is desirable to minimise the number
of iterations in the search whilst maintaining solution quality. This framework not only
accounts for simple optimisation tasks but also more complex design formalisms where the
modifications employed not only modify but also introduce and remove design variables. An
example of some of the modification operators constituting the formalism used in the design

Figure 1. Iterative generate-and-test search augmented by machine learning (ML).
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of pin joint planar truss structures is summarised by Figure 2 [8]. A set of modification
schemas is shown such that the modification operators, termed ‘shape grammar rules’ in this
case, can be applied in succession to generate a large and diverse number of planar truss
topologies. Figure 3 shows the generation of a typical loaded planar truss through repeated
application of the rules. Note that with each application of the modification rules, design
objectives, such as truss mass and number of nodes can change. Truss design will be revisited
later as an example. It should be noted that the modification-based method here supports a
bottom-up synthesis model, which does not bias synthesis by prescribing a design process,
thereby allowing the generation of novel design solutions. Moving beyond parametric
optimisation, synthesis is generally more naturally formulated as modification-based. 

Each modification type is assigned an integer label from 1 to NR, with NR the total number of
modification types. Interestingly, the modification operators in Figure 2 are capable of
introducing (R1, R2), removing (R2, R4) and modifying design variables (R6, R7). In
addition to a basic modification rule type, as shown in Figure 2, modifications may be further
qualified by application variables that provide a more complete description of the applied
modification. Such a parameter may be the point of application of the modification operator
in Cartesian co-ordinates in the design (Figure 2). In combination, the modification type label
and the application variables provide a detailed description of each rule application. However,
it has been observed that is it preferable to keep the number of rule types and application
variables low as a higher level of specification requires more data samples to support
statistical inference through observation.

An additional consideration is the issue of assured versus context sensitive modifications.
When modifications to a design are assured, it is possible to specify an entire viable design as
an arbitrary sequence of modifications applied to any initial design. However, in many
practical scenarios, constraints result in modifications being context sensitive in that the
applicability of a modification at any stage of the design process depends on the state of the
current design and is not always guaranteed. Looking at the example of the truss grammar, it
is clear that repeated application of rule type ‘3’ on any truss cannot continue endlessly. It is
of some use to be able to predict the likelihood that a modification will be applicable at some
point in the future. This may be accomplished by using prior knowledge of the modification
set or by observing the history of successful and unsuccessful attempts at applying the
modifications to help build a statistical model of the ‘probability of application’ for a
particular modification under various circumstances.

Figure 2. The truss modification rules. (rule application
locations are defined by crosshair indicators).

R1: Node addition (single member)
R3: Node removal (single member)
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Figure 3. Development of a truss through application
of grammar rules.
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3. ML-assisted search within the modification-based framework

There are a variety of implementation possibilities for the data modeller and modification
advisor from the completely trivial to the highly complex. The very simplest implementation
is a modeller that does nothing and a modification advisor that suggests random
modifications. This corresponds to the well-known, stochastic generate-and-test search
process. Additional heuristics incorporated in search may include a periodic return-to-base
and archiving of non-dominated solutions1. Enhancement of this approach might include a
modeller that observes which modifications result in more drastic search progress and a
modification advisor that weights modification selection accordingly. This approach could be
further extended to make informed decisions based on more thorough observations of the past
search history and, potentially, the histories of previous searches. With this more advanced
approach, the system would pursue intelligent design strategies, planning the development of
the design solution based on changing circumstances. The use of observation to aid decision-
making has been widely used in such applications as robotic control [9] and design [10],
though here knowledge is acquired through experimentation not observation of a third party
expert. As the knowledge base increases, design strategies that prove to be reliable are
favoured and previously observed approaches that are unproductive are avoided. Important
factors in the development of such techniques are flexibility, multiobjective search
capabilities, robustness and the ability to deal with a wide range of diverse design tasks.

3.1 Identifying design strategies
With the aim of introducing how design strategies might be identified within the
modification-based framework, we use a simple example of a child’s building block game.
Modification types might be defined as select block, lift block, drop block, move block, etc.
Evaluation of the design might involve one or more design objectives, such as calculation of
the height or the base footprint of the tower being built or the number of blocks being used. It
is quite obvious that repeated lifting and dropping of a block is unproductive, as is repeated
selection of blocks without any other action, whereas lifting, then moving, then dropping of a
block is more reliably productive. As suggested above, design strategies could be embodied
by partial sequences of modifications. Longer partial sequences would typically capture more
useful design process information but would be observed with far lower frequency than
shorter sequences, which could be expected to capture more simplistic processes, and
therefore may be less useful.

3.2. Algorithm overview
Having observed how good and bad design practice might be captured in sequences of
modifications, we can propose an ML-based search algorithm that exploits this. The algorithm
outlined here is but one of a number of potential implementations. Details of its
implementation and that of other potential approaches can be found in [11] and [12]. The
algorithm takes a statistical observation-based approach using a data modeller that observes
and analyses the effects of sequences of modifications on the design objectives and rates them
accordingly with an associated figure of merit. The modification advisor then ranks potential
imminent modifications such that highly ranked modifications facilitate high scoring
sequences. Parallels can be drawn with reinforcement learning techniques [13] where the
figure of merit is associated with the standard penalty/reward system. 

                                                
1 In the context of Pareto optimality, a non-dominated solution implies one that is unbeaten in at least one of its
objectives, by all other solutions found [5].
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3.3. The data modeller
The data modeller records and analyses the effects of sequences of modifications on the
design objectives, assigning a figure of merit to each fixed-length sequence observed.

3.3.1. The recorder
A sample of the progress of a typical search in a multiobjective design problem is captured in
Table 1. Referring to the table, if the current iteration is 193, then the search has just applied
modification type 1 to the outcome of iteration 192. In so doing, it has completed a single
modification sequence, <1>, a double modification sequence, <3-1>, and a triple modification
sequence, <1-3-1>. Each sequence is completed subject to the application variables listed in
the last column. By looking even further back into the history of modification applications, it
is possible to observe the effects of arbitrarily long sequences of modifications. Currently, the
algorithm models at fixed pre-defined sequence lengths, though further research will develop
modellers capable of dynamic variation of the modelled sequence length as the number of
observations increase. Assuming, for the purposes of explanation, that the algorithm is
modelling at the level of two modifications per sequence, it will then concern itself only with
the just completed <3-1> sequence. The algorithm therefore calculates the changes in
objective values according to eqn (1) and stores the result for further analysis. 

(1)

Table 1. Sample output of a search procedure

Iterate Obj. Values
Before

Obj. Values       
After

Rule Applied
∈[1,NR]

Application Variables
[v1; v2; v..]

… … … … …
191 [1.0; 3.0] [0.2; 6.0] 1 [0.2; 1.0]
192 [0.2; 6.0] [0.1; 8.0] 3 [0.1; 0.1]
193 [0.1; 8.0] [0.4; 1.0] 1 [1.0; 3.0]
… … … … …

BeforeAfter
192193|13 OOO v −=∆ >−<

DATA MODELLER
Maintains models of sequence effects

Recorder
Stores the observed changes in objective values caused
by each whole modification sequence.

Subdivider
Differentiates between the way a single sequence is
applied and the effects of the application details on the
objectives

MODIFICATION ADVISOR
Identifies potentially beneficial imminent modifications

Pareto Navigator
In multiobjective problems, this influences the Modification
Ranker to insure an evenly spread search in objective
space.

Modification Ranker
Ranks imminent modifications based on a ranking
strategy, which strives to complete sequences with higher
scores.

Performance Observer
Triggers a temporary fallback to random modification
selection if local convergence  is observed.

Figure 4. The components of the data modeller and the modification advisor adapted for this implementation.

Sequence Scorer
Each sequence is assigned a score based on its ability to
influence the objectives as desired.



3.3.2. The subdivider 
An additional task of the data modeller is to group observed sequence effects according to the
application variables so that, for any particular sequence, each subdivision exhibits differing
effects on the design objectives when applied within a particular range of application
variables. Figure 5 plots the observed change in truss mass for a truss design problem over the
sequence of modifications <1-3>. This data is accumulated by the recorder as a function of a
single application variable defined here as the geometric distance separating the application of
the first and second modifications in the sequence. It can be seen that the observed changes in
the mass are generally much wider spread out in the middle ranges of geometric separation.
When the separation distance was zero all the observed changes in mass were zero. This is to
be expected for the truss grammar, as rules 1 and 3 are a rule/anti-rule pair. Sequence <1-3>
applied with zero distance separating them amounts to addition and immediate removal of a
node, leaving the truss unchanged. Every sequence can similarly be resolved into discrete
segments chosen so that the difference in the mean and variance of the observed changes in
objective values of neighbouring segments is maximized. In Figure 5, the segments that result
from subdivision of <1-3> are indicated by vertical lines. In multiobjective problems,
subdivision is performed independently for each objective.  

3.3.3. The sequence scorer
Each sequence or segment thereof, if application variables are used, is assigned two scores, Z+

and Z-, for each design objective. The scoring mechanism favours distributions that promise a
high probability of large positive or negative changes in the objective values respectively.
Essentially the score corresponds to the maximum possible value of improvementR ×
probability of improvement for a particular distribution as in Figure 5. Improvement is defined
as the positive or negative change in objective respectively. The probability of improvement is
inferred from the frequency distributions as in Figure 5. Risk, R, is typically set at unity, but
can be set higher or lower to favour high or low risk/benefit returns from the algorithm.
Figure 6 shows typical Z- scores for a few sample distributions.

Figure 5. Changes in objective due to <1-3> as a function of the
application variable together with histogram plots of the distributions

of the observed data in the subdivided segments.

Figure 6. Sample ∆O distributions and
their associated scores for different

values of R.
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3.4. The modification advisor
The purpose of the modification advisor is to provide an ordered list of appropriate
modifications to make on the next iteration. It is comprised of three components.

3.4.1. The performance observer
When the complexity of escaping local optima exceeds the scope of the sequence models, the
procedure can trap itself by strictly following its preferential treatment of ‘good’ sequences.
The role of the performance observer is to analyse the convergence of the archive of solutions
and instruct completely random modifications if local convergence is observed. As soon as an
advance is made, the modification advisor switches back to its standard practice. Under this
regime the search exhibits rapid archive development and high efficiency until it reaches a
point where a higher level of creativity is required. 

3.4.2. The pareto navigator
Relevant only in multiobjective problems, this component provides an indication of the most
desirable change in objective values to best explore the range of non-dominated solutions
given the past search history and the current location in objective space. It steers the search
away from areas that have been thoroughly searched with little success, as well as objective
values excessively far away from the developing archive of non-dominated solutions. The
pareto navigator outputs a metric, Mw, for each objective, w, in the interval [-1,1], with –1 or 1
indicating a strong need to decrease or increase the corresponding objective respectively. 

3.4.3. The modification ranker
Imminent modifications are ranked via a weighted roulette wheel with weights equal to utility
values assigned to each modification. Calculation of the utility is accomplished by analysing
the contribution of the imminent modification to high-scoring sequences. A simple way of
doing this would be to assign these utilities to be equal to the scores of the sequences that
each imminent modification would complete, thus ensuring that good sequences are always
completed at the next iterate. However, blindly employing such a greedy policy is short-
sighted, as is does not allow the algorithm to invest in short term ‘bad moves’ to capitalise
later by completing a very good sequence. Strict adherence to a long term-oriented policy,
however, never allows the scheme to capitalise on past investments. The technique used here
combines some of the principles described by Humphrys [14] for robot planning and more
formal techniques described by Bernardo [15]. The algorithm effectively does a search to a
depth of NS of the decision tree. At each node of the tree it combines the score of the sequence
just completed with the future utility of that node. The future utility reflects the contribution
of the node to sequences completed in the future and is a weighted sum of the utilities of the
NR possible future nodes, with weighting equal to the probability that the corresponding future
path will be taken. In MO problems, a combined utility is calculated by summing weighted
utilities for each objective with weights equal to the magnitudes of Mw (see 3.4.2).

4. Applications to multiobjective truss design

The first example is the design of an end-loaded symmetrical cantilever truss structure. Figure
8 shows the typical output of a basic search algorithm, which simply applies rules at random,
archiving any new non-dominated solutions discovered in the process. Also shown in the
figure are some of the corresponding design topologies.  Note that the solutions approach the
known optimal Prager topology for the cantilever design [16]. The trade-off between the
number of nodes and the truss mass is visible in the plot of archived objective values. It is



worth noting that since the node movement rule (R7), moves a node a predefined discrete
distance, the node locations are effectively constrained to a grid that could be made more fine.
Figure 9 plots the average convergence for the developing archive when augmenting simple
random generate-and-test synthesis with the technique presented here. Pareto ‘convergence’ is
measured by calculating the hyper-volume, e.g. shaded area in Figure 8, of objective space
that is dominated by the archive of non-dominated solutions. For the first 3% of the search,
convergence tends to be unchanged due to the initial exploration stage used by the augmented
method to increase its knowledge base. Figure 9 includes samples of sequence scores obtained
in the search, reflecting the recognised utility of the various sequences, with the sequences we
would expect to perform well, from inspection of the truss grammar, indeed showing higher
scores. For example, the application of node movement after node addition appears to be a
generally good strategy, whereas removal of a node just after placing it is worthless. As
expected, similar sets of scores were found for other simply loaded truss problems. 

5. Application to a multiobjective sliding tile puzzle

The second synthesis task considered revolves around the well-known puzzle of sliding tiles,
also sometimes called the 8-puzzle. The classic version of this puzzle consists of a number of
tiles arranged in a frame in a grid-like arrangement with one tile missing, as shown in white in
Figure 10b. When arranged correctly, the tiles typically form an image or sequence of
numbers. The challenge of the puzzle is to reconstruct the proper arrangement of tiles from an
initial jumbled up arrangement by successively sliding tiles into the free space. Here, we
consider multiobjective design of dual-colour bitmap images. The initial bitmap image is a
jumbled combination of the two sets of coloured tiles needed for the final images. Each
objective to be minimised is the difference between the current bitmap and a unique ‘goal’
bitmap. Expressed as a multiobjective problem, this promises to reflect the trade-offs between
conflicting goals that might lead to the development of ‘morphed’ bitmaps of varying degree,
with the goal bitmaps obtained at the extremes of the front of non-dominated solutions. The
modifications defined for the purposes of the data modeller consisted of 4 rule types, moving
the free space up, down, left and right, with no application variables. The sequence length
modelled was NS = 2. Figure 10a shows two typical examples of final archives that emerge
from the augmented and un-augmented searches. With the search limited to 12000 iterations,
the higher efficiency of the augmented search translates to a greater capability in exploring
and advancing the pareto front. Figure 10c shows the archive convergence averaged over a
number of separate searches for both the augmented and un-augmented searches. 

Figure 9. Multiobjective convergence.
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6. Implications for general engineering design synthes

The examples above highlight the ability of the ML-based synthesis te
search convergence based on observations of good and bad design
however, more important, is that despite the major differences in the 
tasks, no part of the design algorithm had to be adapted to be applied t
The problems simply had to be expressed within the modification-based 
principle the ML-based design algorithm could function in the same
expected results for any problem as long as it fulfils the requirements
based framework. The design strategies obtained as a result of th
implementation are also of value as it allows the user to see exactly how
be changed, or perhaps even dispensed with to further improve the sea
designs generated. Since the modification operators themselves are 
subsequent searches with the same modification set benefit from past o
possibility would be to allow suitable modification sequences to grad
rules”, i.e. lumped rules in their own right, by defining the sequence as
type with its own numeric label. Meta-rules would be applied as single r
evaluation by the evaluator and further increasing search efficiency. 
application of the rule set will lead to creation of a technique for refin
through learning, a principle similar to that proposed by Gero et al. [
general engineering design are the ability to easily develop, improve a
synthesis tasks formulated in the way described here and to cultivate
knowledge that would improve search efficiency. 

7. Conclusions

A method for exploiting machine-learning-based techniques in enginee
modification-based framework has been discussed. A specific im
methodology has been presented in greater detail and successfully ap
design tasks. Advantages of this approach include flexibility, re-u
knowledge and insight into the design synthesis problem. The frame
extension to a range of design synthesis tasks with minimal effort from 
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implementation described holds the additional advantage that it does not at all rely on design
state information, making it suitable for synthesis formulations that rely on modification rules.
In addition to the algorithm presented here, more advanced ML-based approaches have been
implemented [11]. Research currently underway is directed at developing new ML-based
design synthesis algorithms to provide even faster convergence within the modification-based
framework and applying them to design synthesis problems in more diverse fields, such as
electronics and mechanism design, as well as highly constrained structural design.
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