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Abstract 

Modelling and simulation is of crucial importance for system design and optimisation. 
It has now coming to a point where whole systems can be handled. In aeronautics, 
simulation has been strong in the area of flight dynamics and control. Modelling and 
simulation of basic aircraft systems such as hydraulic systems also has a long 
tradition. The rapid increase in computational power has now come to a point where 
complete modelling and simulation of all the sub systems in an aircraft is possible.  

There are several levels of design from requirement analysis and system 
architecture down to detail design. There is a clear danger that systems engineering 
activities are performed only at the top level of a design. In order to have an impact on 
the product development process it must permeate all levels of the design in such a 
way that a holistic view is maintained through all stages of the design. This can be 
achieved if common system model is used where the interaction with other sub-
system and the whole aircraft can be studied, and where the system can be optimised 
from top level requirements. 

In this paper it is demonstrated how the actuation system control surfaces can 
be simulated and optimised, using a flight dynamics model of the aircraft coupled to a 
model of the actuation system. In this way the system can be optimised for certain 
flight condition by "test flying” the system. The distributed modelling approach used, 
makes it possible to simulate this system much faster than real time on a 650 MHz 
PC. This means that even system optimisation can be performed in reasonable time. 
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1 Modelling and Simulation 
The use of simulation for evaluation of performance and behaviour at the design stage 
is growing rapidly. There also seems to be a dramatic step in model size. The reason 
for this can be illustrated by the graph in Figure 1.  
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Figure 1. Model usefulness as a function of the degree of model completeness 

 
The usefulness of simulations of a system, initially increases with the degree of 
completeness of the model. At a certain point, however the curve flattens off and even 
declines. This is because in order to understand dynamic phenomena, the simplest 
model that captures the phenomena is the best, since a simple model is easier to 
understand and to use for analytical studies. If the degree of completeness is increased 
even more, however, the usefulness of the model tends to increase sharply as a 
complete (in some sense) model is approached. In this region the model can be used 
for evaluation of performance and for verification of system behaviour. This requires 
much more complete models, and has therefore not been used in the past. This is 
rapidly becoming the norm in system development.  

There are several levels of design from requirement analysis and system 
architecture down to detail design. There is a clear danger that systems engineering 
activities are performed only at top level of a design. In order to have an impact on the 
product development process it must, however, permeate all levels of the design in 
such a way that a holistic view is maintained through all stages of the design. This can 
be achieved with common model of the complete system, where the subsystem 
designs can be tested and optimised in an environment where the interaction with 
other sub-system and the whole aircraft can be studied. It does, however, impose 
strong requirements on robustness in the simulation models. 

The rapid development in simulation methods and the general increase in 
hardware performance imply that design methods based on different kinds of direct-
search optimisation for system design, are becoming much more important.  Over the 
years a number of more or less advanced schemes for design optimization has 
evolved. There is a relative rich literature in design optimization, see for example 
G.V. Reklaitis, A. Ravindran, K.M. Ragsdell ,1983, Papalambros, Douglas, Wilde 
1988, or C Onwubiko 2000. There are, however, situations where there is very little 
information regarding the nature of the object function, gradients can not be obtained 
explicitly, and constraints are implicit. This is true when evaluation of the object 
function relays on simulation of dynamic systems. In these situations direct-search 
methods are very attractive. 

2 REQUIREMENTS ON SIMULATION 
Optimisation based on simulation puts very high demands on the numerical efficiency 
and robustness of the simulation. Since a high number of simulations need to be done, 
typically ranging from a few hundred to tens of thousands, low simulation times are 
of course very important.  
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The following strategy that has been adopted for the development of the HOPSAN 
package, developed at Linköping University, for simulation based optimisation: 
• Modelling on a detailed equation level using a symbolic math package to generate 

implementation. In order to provide highly numerically robust models 
• The distributed modelling approach for partitioning of systems, based on bi-

directional delay lines, see (Auslander 1968) and (Krus et al 1990). In order to be 
able to handle large systems efficiently. 

• Different time step for different parts of the model but constant over time. In order 
to give short and deterministic simulation times. 

• Co-simulation, in order to have an open flexible framework for connecting models 
from different groups using different simulation tools (Jansson 2001) 

There is also ongoing development with the prime objective to introduce a model 
centric architecture as opposed to the traditional tool-centric architecture. The 
extensible markup language XML is a prime candidate for defining tools independent 
model-structures. The Modelith schema (http://hydra.ikp.liu.se/modelith/) is an effort 
to define a schema for simulation models. A simulation model can also be a 
component in a process involving several other design tools.  

3 Optimisation 
The rapid development in simulation methods and the general increase in hardware 
performance imply that design methods based on different kinds of numerical 
optimisation for system design, are becoming much more important. Numerical 
optimisation methods require that the object function is evaluated (using simulation) a 
large number of times, but they are very attractive since they can optimise complete 
non-linear systems and do not rely on grossly simplified models as more analytical 
methods do.  Work in this area has shown that optimisation can be used both for 
parameter optimisation and for component sizing; see Krus, Jansson and Palmberg 
1993. It has also been used for component selection, Andersson 2001. 

If a system model in the form of a simulation model is defined, it is possible to 
use optimisation based on simulation. Using this method, the system is simulated 
using using different sets of system parameters xsp.  From each system evaluation a set 
of system characteristics, ysc are obtained and using these, an objective function f is 
formulated.  

In general the simulation is used to obtain the performance characteristics of 
the system. 

)( sps XFY =  (1) 

The object function is a function of the system characteristics. 
)( scobj YGf =  (2) 

there may also be a violation flag,  that indicates if implicit constraints are violated, 
that also is a function of system characteristics. 

)( scviol YCc =  (3) 

Another way to deal with constraints is to use a penalty function that is 
included in the objective function instead. 

The objective function is, as mentioned before, function of system 
characteristics. In many cases there are several objectives that can be more or less 
difficult to combine into a single objective. In these cases multi-objective optimisation 
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can be used, see Andersson 2001. However, one way of combining several objectives 
is to use eq (8). 

∑
=









=

n

i

i

i

i
obj f

ff
1 0

0,

γ

  
(4) 

Here fi are the partial objectives. fi0 represents nominal values used to 
normalise the equation. Typically, these can be established by manually tuning the 
system to achieve a reasonable solution. The value of these can then be adjusted until 
an optimal solution with a desirable combination of characteristics is found. The 
exponent γi can be used to further control the behaviour of the solution. A high value 
(γ>2) will yield a more sever punishment for objectives worse then their nominal 
objectives. 

Although direct search optimisation based on simulation may sound very time 
consuming it has some attractive features. Perhaps the most important is that it is 
possible also to include dynamic properties that can be optimised 

 
In the general case there exist many explicit relations between parameters in the 
system. In fact, in manual design, great efforts are made to obtain explicit design 
relations and there are many cases where system parameters are coupled and cannot 
be chosen independently from each other. It is therefore appropriate to define a layer 
of explicit design relations where relatively few independent optimisation variables 
(design parameters) xdp, are expanded to the full set of system parameters, xsp. 
 
 

 
 
 
 
 
 
 
 
The explicit design relations can be written as : 

( )sp dpX R X=  (5) 

Where Xdp is the vector of design parameters. The whole optimisation problem can 
then be written as: 

Maximize )))((( dpobj XRFGf =  (6) 
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Figure 2. Optimisation based on simulation. 

Figure 3. Optimisation based on simulation with layer of explicit design relations. 
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4 The COMPLEX-RF algorithm 
There are basically two families of optimization methods used in engineering. The 
gradient methods are widely used and are suitable for problems where the gradient of 
the object function can be calculated explicitly at each point. This is the case in many 
structure optimization applications. The other group is the non-gradient methods. 
These methods do not rely explicitly on gradient information in each point. These 
methods are therefore of more general use, since gradient information is not generally 
available, especially if parts of the object function are evaluated using simulation of 
non-linear systems. The modified version of the original COMPLEX method, by Box 
1965) which based on the SIMPLEX method, has been found to be one of  the 
simplest and most easy to use methods, and has been used for system optimization of 
hydraulic systems See Krus et al 1993. The implementation shown here has also been 
described in Krus and Gunnarsson 1993. This implementation of the COMPLEX 
method is also used in some large Swedish companies.  

The method can be used to maximise the function. 
),...,,( 21 NxxxF  (7) 

subjected to the constraints 

iii hxg <<  (8) 

where i = 1,2,....,M. The implicit variables xN+1,...,xM are dependent functions of  
x1,....xN. For design, x1,...,xN  are the design parameters Xdp and the dependent 
functions xN+1,...,xM  are a subset of the vector of system characteristics Yc. The 
constraints gi and hi are either constants or functions of x1,....xN. In the implementation 
used here, an initial COMPLEX of m points is generated. The variables at each point 
are generated using random numbers. 

)( jiijiij ghrgx −+=  (9) 

Here j is an index that indicates a point in the COMPLEX and i an index that indicates 
a variable. rij is a random number in the interval [0,1]. If the implicit constraints are 
not fulfilled, a new point is generated until the implicit constraints are fulfilled. The 
number of points m in the COMPLEX must be, such that m >=N + 1, where N is the 
number of independent variables 

The object function is evaluated at each point. The point having the lowest 
value is replaced by a point reflected in the centroid of the remaining points by a 
factor α.  

))(()( oldxxxnewx ijicicij −+= α  (10) 

The centroid is calculated as 
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Box (1965) recommends α= 1.3. If a point repeats as the lowest value on consecutive 
trials, it is moved one half the distance towards the centroid of the remaining points. 
In this case: 

2/))((´)( newxxxnewx ijicicij −+=  (12) 
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The COMPLEX-RF optimization method used here is a modified version of the 
COMPLEX method by Box (1965). It is modified by introducing some randomization 
in the search. This avoids premature collapse of the method.  

roldxxxnewx ijicicij +−+= ))(()( α  (13) 

Here r is random noise in an interval, which is a fraction of the mean distribution of 
the parameter sets in the COMPLEX. Another modification involves what happens if 
a point repeats as the lowest value on consecutive trials. Instead of just moved 
halfway towards the centroid it is also mirrored in the centroid. This handles 
constraints or sharp edges in the object function better since it avoids a premature 
collapse on the edge. 

rnewxxxnewx ijicicij +−−= 2/))((´)(  (14) 

4.1 Convergence rate 
The number of parameters in the COMPLEX m is function of the number of 
independent variables m=κn where typically 1.5<κ<2. ∆x(k) is the spread of the 
COMPLEX parameter set at a particular evaluation no k. α is the reflection factor in 
the COMPLEX method and this has normally the value 1.3, and n is the number of 
optimization variables (The number of parameter sets in the COMPLEX method is set 
to typically two times the number of optimization parameters). Expressed as a 
function of the original spread ∆x0 the following expression is obtained. 
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This means that the number of calculations needed to reduce the spread down to ε of 
the original spread can be estimated by: 

εlog64.4 nk −=  (16) 
From this simple relationship follows that, the number of evaluations to reduce a 
COMPLEX a certain amount, is linearly dependent on the number of points in the 
COMPLEX. In reality the objective function can be much more complicated than 
assumed here, but this estimate gives a lower bound to the number of evaluations 
necessary and a fair description of the behavior near optimum. 
 An interesting aspect is to study the amount of information gained in each 
evaluation. In general the amount of information (in bits) to represent a value can be 
expressed as: 

S
x

xLogI −=
∆

= 2  (17) 

where ∆x is the uncertainty of the variable and x its nominal value. S is the entropy, 
and information I represents negentropy. Therefore the change in entropy, in each 
iteration, can be written as: 
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the multiplication with n comes from the fact that all n variables gain information. 
This can be simplified to: 
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with α=1.3 and k =2 yields 
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This means that the system is gaining 0.155 bits of information at each evaluation 
(which may seem like a very small value). Note that this is independent of the number 
of optimization variables. However, for more optimization variables it takes longer 
time to converge since more information is needed. This represents an upper 
theoretical limit for the amount of information gained in each function evaluation. In 
reality even a benign object function gives a convergence rate several times lower 
than this.  

5 Example: Simultaneous optimisation of control system and actuation 
system. 

The system model is consisting of a six degree of freedom model of a fighter aircraft 
and a model of its hydraulic actuation system. See Figure 4. There is also a flight 
control unit. This could either represent an actual flight control unit or just a system 
needed to represent a pilot to fly the aircraft through the simulation. Even if the aim of 
this optimisation is not the design of the flight control system, it needs to be included 
in the optimisation since different controllers may be needed for different actuation 
system parameters. There is also a simple engine model to represent the two engines 
in the aircraft. 

5.1 The explicit design relations 
In this example there are many explicit design relations that can be used to reduce the 
number of optimisation variables x. The most obvious one is the symmetry relations. 
The symmetry requirement is imposed means that there is a left-right symmetry in the 

Figure 4. The HOPSAN simulation model 
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control system which means many of the design variables are transformed into two 
system variables. Another useful mechanism for parameter reduction that also falls 
into this category is the use scaling. A component such as a servo valve has many 
design parameters but the driving requirements for a servo valve are usually only flow 
capacity and bandwidth (speed). This means that is can be assumed that most real 
valves can be described by only two performance parameters and in this case only one 
is used which is size. The pistons are also only described by one parameter, which is 
the piston area.  
 

5.2 The objective function 
The main objective is to produce an actuation system that can turn the aircraft as fast 
as it is possible while having as low weight as possible. That means that the 
components should have as small size as possible. In addition the pressure variation in 
the actuators is something that should be kept down in order to promote stable 
systems. In this example there are no constraints except in the explicit design 
relations. The objective function can be written as 
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 Here Ieϕ is the integrated error in yaw angle, Ieθ is the integrated error in tip. 
Ip is the sum of integrated pressure variations in all the actuators (high pass filtered to 
remove the DC component). Finally, ms is the total weight of the actuator system. The 
optimisation algorithm is set up for finding maximum, hence the negative sign in front 
of the expression. 

There are ten design parameters used for the optimisation in this example. They 
are  

• Size of the aileron pistons 
• Size of the elevator and rudder pistons 
• The size of the aileron valves 
• The size of the elevator and rudder valves 
• Gain of the aileron servos 
• Gain of the elevator and rudder servos 
• FCU gain in pitch 
• FCU gain in roll 
• FCU gain in yaw 
• FCU coupling gain between yaw and roll 

In order to be more efficient it is often useful to let the optimisation algorithm operate 
on the logarithm of the design parameters. This is especially useful when the design 
parameter space spans several orders of magnitude. The design space for all these 
parameters was at least one order of magnitude. 

5.3 Results 
The aircraft actuation system was optimised for the case of a sharp 90 deg turn. The 
simulation started at the time –30 second and the turn was to be initiated at the time 0. 
The system was then simulated for an additional 40 seconds bringing the total up to 
70 seconds. The optimium solution was found after 500 simulation runs.  
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The optimised flight path is shown in the figure below. From this plots it can be seen 
that the system behaviour is satisfactory. The original parameter design space was 
very large and most of the initial parameter sets was unable to fly stable at all. 
 
 

 
 
 
 
 
Looking into the subsystems it is also possible to study the detailed behaviour of 
components and subsystems 

x-position
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Figure 6. The flight-path of the optimised aircraft. 
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Number of evaluations
Figure 5. The convergence of the parameter values as a function of number of 

calculations. 
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6 Conclusions 
Optimisation techniques are at the core of computational engineering design and in 
this paper it has been demonstrated that direct-search optimisation can be used on 
full-scale simulation models for system optimisation.  

Simulation based optimisation does, however, puts special requirements on the 
models and methods used for simulation. Several stages in the design process can be 
identified, such as object function formulation and parameterisation of the model. The 
direct-search optimisation method found most suited for these kinds of problems is 
the COMPLEX-RF method which also has been analysed in this paper. 
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