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ABSTRACT 
One of the main stages of robust Engineering Design is the propagation of uncertainty in the computer 
analysis system. This paper presents a comparative study of various methods for uncertainty 
propagation, including some recently proposed derivative-free techniques called Sigma-point methods. 
The latter are assessed against more conventional techniques such as Monte Carlo simulation and 
moment propagation based on truncated Taylor series. The accuracy and computational efficiency of 
all methods is investigated by means of mathematical analyses and numerical examples. The solution 
of a robust optimization problem based on the presented methods is included. Theoretical analyses and 
numerical results highlight that the accuracy of robust optimization using Sigma-point methods can be 
enhanced with respect to that using moment propagation based on linearization without altering 
significantly the computational cost of a single optimization step. The paper also discusses the optimal 
deployment of Automatic Differentiation in conjunction with the uncertainty analysis technique 
chosen for the solution of the robust optimization problem and highlights the computational benefits 
that this yields to. 
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1 INTRODUCTION 
Modern Engineering Design of complex products such as aircraft and aircraft propulsive systems is 
increasingly based on sophisticated multidisciplinary analysis and optimization tools. One difficulty 
associated with this design task is how to handle a variety of non-deterministic factors associated with 
the modelling stage (e.g. uncertainty of physical and numerical modelling), the manufacturing process 
(e.g. manufacturing and assembly tolerances) and the operation environment (e.g. weather variability). 
Robust design optimization (RDO) aims at designing products which not only have an optimal 
performance for given design specifications and constraints, but also exhibit minimal sensitivity with 
respect to probabilistically varying factors such as those mentioned above. The original methodology 
is due to Taguchi, and was based on direct experimentation [20]. It was then extended to simulation-
based design, and gradually improved by using nonlinear constrained optimization techniques [18]. 
The constrained RDO strategy is made up of three main parts. The first stage consists of identifying, 
qualifying and quantifying the sources of uncertainty associated with the design input and the analysis 
modules. This is usually done by means of stochastic models. The second phase consists of 
propagating the uncertainty through the analysis system, to obtain a probabilistic description of the 
objective functions and constraints. The probabilistic state is often defined by suitable robust forms of 
objectives and constraints depending on expectation and variance of their deterministic counterparts. 
Finally, the third stage consists of optimizing the robust objectives subject to the robust constraints. 
The robust optimal design is such that both the expectation of the objectives is optimized and their 
variances are minimized. 
This paper focuses on the second stage of RDO, which is critical for both the accuracy and the 
efficiency of the methodology. Several approaches to uncertainty analysis are available, including 
Monte Carlo methods (MCS), method of moments based on truncated Taylor series (MM) and 
Gaussian quadrature (GQ). Among these techniques, uncertainty analysis based on first-order 
derivatives has been often used in RDO due to its simplicity and computational speed. The accuracy of 
this method, however, is not satisfactory for highly non-linear functions or widely spread input 
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variables, and the method cannot handle discontinuous problems or discrete variables. In this paper, 
we compare the aforementioned methods with two advanced techniques, the Unscented Transform 
[15] and the Divided Difference Filter [17].  These methods belong to a class called Sigma-point 
methods (SP) and have been proposed in Control Theory in the past few years. One of the objectives 
of this work is to demonstrate their suitability for robust Engineering Design. As discussed in later 
sections, the computational performance of the SP methods in robust gradient-based optimization can 
be greatly enhanced by the use of Automatic Differentiation (AD) [1, 24]. AD tools can be used to 
obtain derivatives of functions defined by arbitrarily complex computer programs, and such 
derivatives are exact with respect to the code-defined functions from which they are obtained. This 
means that, unlike Finite Difference estimates, they have no truncation error and are thus accurate to 
within machine accuracy. AD software is usually based on either source transformation or operator 
overloading [2]. In both cases, the source code of the analysis program is required. The code 
differentiation can be done in forward or reverse (also known as adjoint) mode. The latter route is 
computationally much faster than the former when the number of input variables is much larger than 
that of the output variables. This is because the gradient of each output with respect to all input 
variables can be obtained at a cost comparable to that of a single analysis when using the adjoint mode 
[1, 2]. AD software is currently available for all common programming languages such as FORTRAN 
and C/C++. The numerical examples reported in this paper are implemented in MATLAB, and we have 
chosen to use MAD [9, 10] for AD.  
The paper is structured as follows: Section 2 introduces the problem of robust optimization and 
uncertainty propagation; the uncertainty analysis based on MCS, GQ and MM is summarized in 
Section 3, whereas the SP methods are presented in Section 4. This section also reports an error 
analysis based on a comparison with the estimates of the Taylor series. In Section 5, we use the 
aforementioned methods to perform uncertainty analysis of selected test functions and compare the 
accuracy and computational performance of the methods. A robust optimization problem is also 
considered. The conclusions of this study are finally reported in Section 6.   

2 ROBUST OPTIMIZATION AND UNCERTAINTY PROPAGATION 
Engineering design is commonly performed with the aid of computer programs, which model the 
different disciplines characterizing the behaviour of the system of interest. Let us consider a scalar 
function y= f(x), with x being an array of n design variables. The deterministic design optimization 
problem consists of finding the vector x which minimizes y subject to r constraints . In RDO 
both the objective function and the constraints become probabilistic functions of the stochastic 
variable x, which here is assumed to have a known probability distribution. The robust attribute of the 
objective function can be achieved by reducing its sensitivity to the random fluctuation of the design 
variables x, that is, minimizing the variance 

( ) 0ig ≤x

2
yσ  while optimizing its expectation y . The robustness of 

the constraints is instead guaranteed by accounting for their probabilistic satisfaction within the range of 
variation of the design variables. The robust optimization problem can be formally stated as follows: 

Find x∈ nR to minimize ( ( ), ( ))x xσ yF y , 

subject to ( ( ), ( )) 0 1,...,x xσ ≤ =
ic i g ig g i r , 

x x x≤ ≤L U . 

The target of uncertainty analysis is to obtain mean and variance of y starting from the knowledge of 
the uncertainty affecting x. If all the variables are continuous, the first two moments are: 

[ ( )] ( ) ( )Xx x x
+∞

−∞

= = ∫y E f f p dx ,                                                                                                 (1) 

{ }22 ( ) [ ( )] ( )y f E f p dσ
+∞

−∞

= −∫ Xx x x x .                                                                                       (2) 

Here Xp is the joint probability function corresponding to the mentioned distributions. Since a closed-
form solution of these integrals can be obtained only in a few cases of practical interest, uncertainty 
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propagation is usually performed in an approximate fashion. Existing approaches include Monte Carlo 
methods [13, 14, 26], Taylor-based method of moments [7, 11, 12, 19], metamodels [22], polynomial 
chaos expansion [27] and reliability-based techniques [28]. 
The next section concerns the first two methods along with GQ. These three approaches provide the 
theoretical background required for discussing certain features of the SP propagation technique. 

3 BACKGROUND 

3.1    Monte Carlo Methods 
Simulation methods like Monte Carlo simulation have been intensively used in uncertainty analysis 
since their introduction in the 1940s. The underlying principle is frequentist: probability distribution of 
the output of a process induced by the probability distribution of stochastic inputs is obtained by 
performing m repetitions of the process. Each time the sampling point of the input space is drawn 
according to the known (or assumed) distribution of the inputs. When using simple random sampling, 
unbiased estimators of the integrals in Eq. (1) and Eq. (2) are given by: 

ξ i

1

1

=

= ∑MCS

m

i
i

y
m

y ,                                                                                                           (3) 

2

1

1
(

1
σ

=

= −
−
∑MCS MCS

m

y i
i

y y
m

2)

i )

,                                                                                                       (4) 

where . The standard deviation of the mean estimate from its exact value is , and 
is independent of the number of inputs n. One major disadvantage of MCS with respect to other 
uncertainty analysis methods is that the number of samples required for a sufficiently accurate 
estimate of the mean and the variance can be very large, thus requiring a large computational effort. 
For this reason, several other sampling techniques have been developed to reduce the number of 
required samples with respect to that of random sampling. The class of alternative methods include 
descriptive sampling [26], stratified and Latin Hypercube sampling [14]. These techniques reduce the 
number of samples required for a given accuracy, but the number of analyses still remains too high for 
practical use, particularly in the case of computationally demanding analysis codes. Another downside 
of any Monte Carlo technique to be used for RDO is the repeatability of the prediction [4]. For a given 
input distribution, the mean and variance obtained with different simulations may differ significantly 
even when using the same number of samples, and this spread decreases with m. In order to avoid 
insufficiently accurate derivatives when using MCS in gradient-based robust optimization, one may 
then have to increase m above the threshold required for the desired accuracy of mean and variance. 
This leads in turn to a very high computational effort. Figure 1 shows the mean and variance estimates 
obtained trough random sampling of the function

( )ξ=iy f 1/ 2( −O m

sin( )=y x . The variable x is normally distributed 
with mean / 4π=x  and unit variance. Note that the number of samples needed for a sufficient 
reduction of the mean and variance spread is . In the framework of a gradient-based RDO, this 
number of analyses ought to be performed at each step of the optimization. 

6(10 )O

3.2 Gaussian Quadrature 
Quadrature formulas give the approximation of the integral of a function  on a domain ( )xf ⊂ nD R  
by a properly weighted sum of particular functional values ( )if x , where the points ix ’s are suitably 
selected in D, and are also called nodes. When f depends on a single scalar input, GQ formulas are 
known to perform better than many other quadrature formulas [3]. Their straightforward extension to 
the multivariate integration is a product rule, which consists of applying the one-dimensional formulas 
to each of the n dimensions of D. Let us assume that 1 2 ...= × × × nD D D D , where ×  denotes the 
Cartesian product, and ⊂iD R , for . Applying the one-dimensional integration rule with N  1...i = n
nodes and given weights  to each iW iD , the integrals of Eqs. (1) and (2) can be approximated as follows: 
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Three-node formulas (N=3) are usually adopted to obtain a sufficient accuracy. The arrays of design 
variables in Eqs. (6) and (7) are distributed at the vertices of an hypergrid of dimension 3 . The vector 
associated with  corresponds to the mean of the input variables 

n

1 2 ... 2= = = =ni i i x . The states with 

one or more subscript  equal to 1 have the corresponding components perturbed by pi σ−
pih  with 

respect to their mean, where 
pi

σ is the standard deviation of 
pi

x  and −h  is a suitable scalar. The states 

with one or more subscript  equal to 3, on the other hand, have the corresponding components 

perturbed by 
pi

σ+
pih  with respect to their mean, where +h  is again a suitable scalar. The three weights 

 and the values of iW +h  and  have now to be determined. For the case of independent Gaussian 
variables, Taguchi [25] proposed a solution based on equal weights  with 

−h

1/ 3=iW

1
3 / 2+ −= = =

GQ
h h h . D’Errico and Zaino [6] improved this approach suggesting the adoption of 

1
3=

GQ
h  and distinctive weights . Seo and Kwak [21] finally generalized it to 

consider non-Gaussian distributions. Those modified Taguchi methods for statistical tolerance design 
have an accuracy of  (for symmetrical input distributions), but are very demanding for 

computational RDO since the number of required function evaluations is 

{1/ 6, 2 / 3,1/ 6}=iW

6( )σ xO

3= nN .  

 

 Figure 1. Convergence of mean and variance estimate for random sampling MCS 

Computationally more affordable alternatives to full factorial design have been suggested. For 
example, Evans [8] proposed an improved integration technique for which the approximated mean and 
variance in the case of independent input variables are: 
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and is the  column of the identity matrix of size n.  The weights and the nodes are instead: ep
thp
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p p

.p p p x p p p xE x x E x xγ σ σ= − Γ = −  

Evans showed that the error of this formula is 5( )σ xO  in the general case and  in the case where 

all the input distributions are symmetric. This method requires 

6(σ xO )

122 +n  function evaluations, and 
captures the skewness and the kurtosis of the output distribution as well as its mean and variance. 

3.3 Taylor-based moment propagation 
In the case of continuous variables and functions, an alternative method for propagating uncertainty is 
to approximate the statistical moments of the system response by means of a truncated Taylor series 
expansion of y. The function of interest is expanded about the mean of the input variables, and one 
then calculates the moments of the truncated series (typically mean and variance). This technique is 
also called method of moments, and classified according to the order of truncated series (denoted by a 
Roman number in this paper, e.g., I MM for first-order series) and the number of moments considered. 
From the general Taylor series expansion truncated to the fourth order: 
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and assuming independent input variables, the  mean and variance of y are given by, respectively: 
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I MM has been largely applied to uncertainty problems [7, 11, 12, 18, 19]. However, unless one 
restricts the analysis to very small values of the input variance its accuracy is often unsatisfactory in 
the frequent case of highly nonlinear functions. A seemingly obvious improvement could be achieved 
by retaining second-order terms in the truncated Taylor series. Indeed this guarantees a better accuracy 
of the mean estimate. The term M2 in Eq. (10), in fact, increases the accuracy of the mean to 3( )σ xO , 

which is above the error associated with the linearization. As for the output variance, however, 
retaining only second-order terms of the Taylor series does not necessarily improve the accuracy with 
respect to that of the linearization. In order to explain this, let us consider the case of symmetrically 
distributed input variables. In this circumstance, the term V2 in Eq. (11) is zero, and a variance 
approximation which correctly captures terms of 

2(σ xO )

)4(σ xO  can be obtained by retaining not only the 
terms V4 and V6, but also the terms V3 and V5. These latter, however, contain contributions of the 
third derivatives, and their magnitude relative to that of the other two  terms is not known a 
priori. When V3 and V5 are omitted (i.e. only derivatives up to second order are considered), one 
cannot define rigorously the order of the variance approximation. In practice, if the third derivatives 
appearing in V3 and V5 are small, one may increase the range of input variances above that of the 
linearization and enhance the accuracy of the variance by doing so. However, if the third derivatives 
are not sufficiently small, the variance estimate will be worse than the result based on the first-order 
approximation. To emphasize this point, let us consider again the function

4(σ xO )

sin( )=y x , with x normally 

distributed about / 4π=x . The left and right plots of Figure 2 report y  and 2
yσ  against 2

xσ , 
respectively, using I MM, II MM and III MM. Note that retaining the second-order derivatives 
increases the accuracy of y  compared to the linearization, while it causes 2

yσ  to worsen fairly rapidly. 
The main advantage of MM is its computational efficiency, which depends on the available methods 
for calculating derivatives. A reasonably accurate prediction of the output variance of highly nonlinear 
functions depending on significantly spread inputs requires retention of higher-order derivatives. 
These latter could be accurately and efficiently determined by using adjoint and/or forward code 
differentiation. Derivative codes can be developed by hand and/or using AD. In most applications of 
practical interest, however, this can be done only if the source code of the analysis program is 
available. Besides it should be noted that both manual and automatic code differentiation for 
derivatives beyond the second is a fairly complex task.  

4 SIGMA-POINT METHODS 
The polynomial approximation obtained by truncating the Taylor series after a certain number of terms 
may be regarded as an extrapolation process. The fact that the MM estimates of mean and variance 
worsen as the input variance increases can be viewed as a consequence of this feature. Moreover, 
obtaining higher-order derivatives for adequately approximating highly nonlinear functions may be a 
problematic issue. Indeed neither AD nor manual code differentiation may be sufficient to obtain the 
codes that calculate such derivatives. On the other hand, the use of Finite Difference approximations 
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would be computationally costly, and would raise concerns about the undesired effects of truncation 
errors. An alternative to increasing the resolution of the approximation in a single point, typically the 
input mean, is to use the information collected at multiple points in the input space. In this Section, we 
present two methods based on this principle, known as Sigma-point (SP) approach: the Unscented 
Transformation (UT) [15] and the Divided Difference Filter (DDF) [17]. Both methods were 
developed in Control Theory to overcome the limitations of the Evolved Kalman Filter, which uses 
linearization for state estimation of nonlinear systems. The UT and DDF methods share notable 
similarities with the GQ techniques. They require less function evaluations, and this is traded off with 
the capability of capturing only the first two moments of the output distribution. These latter, however, 
are the only ones of interest in most RDO problems. 

 

Figure 2. Mean and variance estimate for MM compared with MCS  

The UT, which has been considered for robust design applications in [5] and [23] as an alternative to 
MCS, proceeds from an intuitive consideration [15]: the probabilistic description of y is more 
conveniently obtained by approximating the input distribution rather than the function f(x). 
Approximating the input distribution means choosing a sufficient number of key points (Sigma points) 
in the input space, and evaluating here the function y. Assuming symmetric input distributions, the 
Sigma points are also symmetrically spread about the mean x , at a distance which depends on the 
input covariance matrix. For the case of independent input variables, the Sigma points are: 

0 ,=x x  (12) 

,
SP pp x ph σ± = ±x x e                                                                                                                    (13) 

where is the ep
thp  column of the identity matrix of size n and  is a suitable scalar; the subscript SP 

is used because these considerations hold for all the SP approaches. The function values are 
then used to calculate the mean and variance of the output by means of following weighted sums: 
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The DDF, on the other hand, builds a local second-order polynomial approximation of the function of 
interest by using Stirling interpolation formula. The Sigma points and the weights are chosen exactly 
as in the UT; the resulting mean estimate

DDF
y is calculated as 

UT
y in Eq. (14), while the following 

formula is proposed for variance estimation [17]:  

( ){ }2

1

2 22
0

1
2

( ) ( ) 2 ( ) ( ) 2 ( )
DDF

n

y
p

p p p p p p pW f f W W f f fσ
=

+ − + −= .⎡ ⎤ ⎡− + − + − ⎤⎣ ⎦ ⎣∑ x x x x x ⎦  (18) 

It can be shown that most higher-order terms in the expressions (10) and (11) for mean and variance 
can be captured by assigning to  the kurtosis of the input distribution [15, 16]. For the Normal 

distribution, it turns out that

2
SP

h

3=
SP

h , as in the quadrature rules discussed in subsection 3.2.  
The SP approaches require 2n+1 function evaluations for each analysis, and are derivative-free, which 
means that, in principle, they can handle discontinuous functions and discrete variables. When the 
considered function is differentiable, these techniques can be efficiently coupled with gradient-based 
optimizers: since the SP robust objective is not built using derivatives, its gradient is simply a 
combination of gradients of the deterministic objective. On the other hand, MM gradient-based 
optimization would require at least one more level of differentiation, in case of first-order 
approximations, and even more levels with higher-order representations. Thus, the computational cost 
of a single step of gradient-based RDO, in terms of function evaluations, is not altered significantly by 
using the SP methods instead of linearization for the propagation phase. However, as explained in the 
following subsection, the SP methods can give a more accurate robust objective with respect to I MM. 

4.1 Accuracy of the Sigma-point methods 
The accuracy of the SP methods can be assessed by comparing the expressions of mean and variance 
yielded by Taylor-based MM of Eqs. (10) and (11), and those obtained by expanding each 

 in Eqs. (14), (15) and (18) into fourth-order Taylor series. Choosing  as the kurtosis 
of the input variables, the error terms in the case of independent symmetrically distributed inputs are 
given by:  

( )py f= x p
2

SP
h

4
2 2 4

2 2
1 1

1
+ terms of order > 

8
;
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y y x x
p q p q

p q
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x x xε ε σ σ

= =
≠
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= =

∂ ∂
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The SP methods lead to a better mean estimate compared to I MM, while the variance estimate has the 
same order of accuracy of I MM. Besides, the SP methods miss some  contributions in the 
variance, similarly to II MM. Nevertheless, in the case of functions with weak interaction between 
input variables, i.e. functions for which the cross-derivatives in Eqs. (20) and (21) are negligible with 
respect to the other terms, the SP methods may approximate  the variance better than I MM.  

4( )σ xO

5 RESULTS 

5.1 Uncertainty Propagation Test Cases 
The SP methods have been tested with a number of simple, but representative test cases, and compared 
with results obtained by MCS and MM. The following functions have been considered: 
1. ; 1 2( ) sin( 0.21) sin( 0.21)f x x= − −x

2. ; 2 2
1 1 2 2( ) 0.5 1.5 0.7 1.2 1.05f x x x x= − + − +x
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3. ; 3 2 3 2 2 2
1 1 1 2 2 2 1 2 1 2 1 2( ) 1.7 1.3 2.4 0.5 3.2 1.6 0.1 0.2 1.6 12.8f x x x x x x x x x x x x= + − − + − + − + −x

4. 2 3 2
1 1 2 2 2( ) 0.4 0.7 0.5 1.1 0.9 1.3 2

2 1f x x x x x x= + + − − −x x . 
Independent normally distributed input variables with unit mean have been used in all cases, and the 
analysis has been performed for several input variances. The output mean estimates based on I MM, 
III MM and the two SP methods are reported in the last three columns of Table 1. Note that a) these 
values are given as percentage errors with respect to the result of MCS with  samples, b) the 
column labelled ‘III MM’ is obtained using Eq. (10) and omitting the fourth derivative, c) assuming 
symmetric input distribution, the mean based on III MM and II MM do coincide. These results 
highlight the anticipated accuracy improvement of the mean estimate obtained by using the SP 
methods rather than linearization. The variance estimates are reported in Table 2, wherein all results 
are again provided as percentage errors with respect to MCS with  samples and the column 
labelled ‘III MM’ is based on Eq. (11). 

610

610

Table 1. Uncertainty Propagation Results: Mean Estimation 

Percentage error with respect to MCS (  samples) 610Test 
Number 

xσ  
       I MM   III MM       UT and DDF 

1 
 
 

0.05 
0.2 
0.5 

 0.250 
 4.082 

28.395 

-0.000 
-0.081 
-3.703 

-0.000 
-0.039 
-1.746 

2 0.05 
0.2 
0.5 

  0.671 
 11.940 

    200.000 

 0.000 
 0.000 
 0.000 

 0.000 
 0.000 
 0.000 

3 
 

0.05 
0.2 
0.5 

0.044 
0.720 
4.679 

-0.000 
-0.000 
-0.000 

-0.000 
-0.000 
-0.000 

4 0.05 
0.2 
0.5 

-0.051 
-0.824 
-4.931 

 0.000 
-0.000 
  0.004 

 0.000 
-0.000 
 0.004 

Table 2. Uncertainty Propagation Results: Variance Estimation 

Percentage error with respect to MCS (  samples) 610Test 
Number 

xσ  
      I MM  III MM      UT       DDF 

1 
 
 

0.05 
0.2 
0.5 

0.220 
4.054 

27.031 

-0.030 
-0.107 
-4.727 

0.033 
0.977 
5.285 

 0.096 
 1.998 

  12.286 
2 
 
 

0.05 
0.2 
0.5 

-1.224 
 -16.938 
 -56.068 

 0.036 
 0.017 
-0.017 

-0.560 
-8.002 

-26.527 

0.036        
0.017 

  -0.017 
3 
 
 

0.05 
0.2 
0.5 

-0.119 
-1.111 
-7.058 

-0.049 
-0.003 
-0.551 

-0.190 
-2.226 

-13.254 

  -0.192 
  -2.257 
-13.439 

4 0.05 
0.2 
0.5 

-0.079 
-1.270 
-7.354 

0.000 
-0.019 
-0.017 

-0.024 
-0.407 
-2.276 

-0.026 
-0.433 
-2.430 

Table 2 reveals a more variegated landscape than Table 1. In fact, there are cases for which the partial 
inclusion of the higher-order terms associated with the SP methods yields better accuracy than the 
linearization over the whole range of considered variances (cases 1 and 2). Conversely, in test cases 3 
and 4 the cross-terms of Eqs. (20) and (21) are not negligible, and this greatly spoils the accuracy of 
the SP methods for large input variances. Hence, as for the Taylor-based MM, the presence of strong 
nonlinearities restricts the range of input variances one may use. To overcome this limitation, one 
ought to add more points (following the quadrature approach), or higher-order derivatives. 
Unfortunately, an accurate calculation of higher-order derivatives is often not possible in real world 
applications, because the function of interest may be defined by sophisticated computer programs that 
may be very hard to differentiate. Besides, the source code may even not be accessible. Finite 
differencing is a potential alternative. Unfortunately, it has two significant drawbacks: a) it is 
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computationally expensive as it requires numerous executions of the analysis program, and b) it may 
be insufficiently accurate because of truncation errors. These are the reasons for seeking alternatives to 
MM for propagating uncertainty in robust Engineering Design. In some cases, however, it is possible 
to use the AD technology either to calculate higher-order derivatives for MM and/or low-order 
derivatives to enhance the performance of SP methods in robust optimization.  An example of both 
features is provided in next subsection. 

5.2 Robust Optimization Test Case 
In aeronautical conceptual design, the aircraft layout is determined on the basis of fundamental 
specifications such as range, number of passengers, take-off and landing field length, and all analyses 
are performed with simplified models. All these analyses also involve other parameters such as 
approach speed, maximum take-off weight, noise emission, acquisition and operating cost, which can 
be treated either as inequality constraints or objectives to be optimized. Subsequent preliminary and 
detail design may yield variations of the original layout. Robustness of conceptual design optimization 
is thus required to minimize possible specification and constraint violations induced by such changes. 
The aircraft conceptual design test case that we have selected to demonstrate the strength of the 
Sigma-Point approach for realistic problems has 96 models and 126 variables. The robust optimization 
problem is set as follows: 

• Objective: optimize MTOW  ( Maximum take-off weight); 
• Fixed parameters: Number of passengers =150, Number of engines paxN eN =2, Cruise Mach 

cM =0.75  and altitude =31000 ft; h
• Independent variables : Wing area , Wing span , Wing sweep , Thickness to chord 

ratio t/c, Engine sea level thrust 
x S b Λ

eF . The respective ranges of variation are:  150 2m ≤  S ≤  

160 , 31 m  b ≤35 m, 19 deg 2m ≤ ≤  Λ ≤  26 deg, 0.08 ≤  t/c ≤0.12, 135 kN≤ eF ≤150 kN; 
• Constraints considered: Range R > 4600 Km, Take-off field length TOFL < 2000 m, Wing 

fuel/Fuselage fuel  < 0.75, Cruise thrust coefficient  < 1 and Climb speed fnK fcK zV  < 500 
ft/min. 

The input variables are independent Gaussian variables with 0.1/σ μ =x x . The objective function has 

been defined as MTOWrobMTOW MTOW σ= +  and the constraints take the following 
form: ( ) ( ) 02c gg g σ+= x x ≤ . Mathematically, two optimization problems differing only for the 
calculation of mean and variance of objective MTOW and constraints have been set up. The considered 
methods are: I MM and DDF. Numerically the two optimization problems have been solved in 
MATLAB using the gradient-based optimizer fmincon. The latest version of the MATLAB 
overloading AD software MAD developed by Forth [9, 10] has been used to support the solution of 
the robust optimizations. MAD computes first-order derivatives using the adjoint differentiation mode, 
and higher-order derivatives using the forward mode. This AD tool can also propagate derivatives 
through most built-in MATLAB functions such as fsolve. We have used MAD in two different ways. In 
the I MM optimization, MAD yields the first derivatives of the deterministic objective function MTOW 
required to build its variance, and its second derivatives to build the gradient of the robust objective 

 for the optimizer. Using MAD, the calculation of  and its gradient is 
approximately (n+2) times that of a single evaluation of MTOW due to the use of the adjoint mode for 
first-order differentiation. Finally, in the SP-based optimizations, MAD is used to calculate the gradient 
of . The cost of computing  and its gradient is therefore (4n+2) times that of a 
single MTOW calculation.  Table 3 presents the results of the three optimizations. In order to partially 
validate these results, three MCS’s with samples centred at  have also been performed, and the 

last two rows report the values of  

,rob optMTOW ,rob optMTOW

,rob optMTOW ,rob optMTOW

610 optx

optMTOW  and ,σ MTOW opt  thus obtained. Overall Table 3 shows that 
the SP solutions are in good agreement with those of MCS and I MM. This supports the assumption 
that SP methods can be effectively used to improve computational RDO. In fact, the computational cost 
required by an SP-based optimization step is comparable to that of the linearization, and the mean 
estimate of SP is accurate to 3( xO )σ whereas that of the linearization is accurate only to . This 2( )xO σ
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feature is likely to make SP-based RDO applicable over a wider range of input variances compared to 
the linearization-based methods. 

Table 3. Robust Optimization Results 

Method I MM SP 

,rob optMTOW  [Kg] 91804.976 92026.726 

optMTOW  [Kg] 90491.711 90710.430 

,σ MTOW opt  [Kg] 1313.264 1316.295 

S  [ ] 2m 159.968 160.000 
b [m] 31.000 31.000 
Λ [deg] 19.000 19.000 

t/c 0.080 0.080 

eF  [kN] 135.000          138.457 

,MCSoptMTOW  90489.216 90710.442 

, ,σ MCSMTOW opt  1327.358 1322.498 

 

6 CONCLUSIONS 
Uncertainty propagation is crucial to both accuracy and efficiency of computational robust design. I 
MM is largely used to propagate uncertainty due to its simplicity and convenience. The applicability 
of this method, however, is limited to fairly small input variances when significant nonlinearities exist. 
This paper has presented the SP approach for uncertainty propagation along with a comparison with 
MCS, GQ and higher-order MM. The presented error analysis and the solution of some simple but 
representative numerical examples show that SP methods can lead to better mean estimates compared 
to I MM. The error analysis also shows that the accuracy of the SP variance is at least as good as the 
one based on the linearization, and even higher for functions with small interaction between variables. 
The SP approach is derivative-free and needs 2n+1 function evaluations for each analysis. Since the 
SP robust objective is not built using derivatives, its gradient is simply a combination of the gradients 
of the deterministic objective. Thus, when the objective function is differentiable and the SP method is 
used with gradient-based optimization, the cost of each step of the robust optimization in terms of 
function evaluations is comparable to that based on the linearization. An interesting special case is that 
in which the source code is available and code differentiation is used. This feature has been 
highlighted by solving a robust optimization problem for the conceptual design of a civil aircraft, with 
a gradient-based method and computing derivatives with the AD tool MAD, which uses adjoint and 
forward differentiation. 
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