
ICED’07/47 1

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED’07
28 - 31 AUGUST 2007, CITE DES SCIENCES ET DE L'INDUSTRIE, PARIS, FRANCE

LEARNING FIRST-PERSON KNOWLEDGE THROUGH
INTERACTIONS: TOWARDS EFFECTIVE DESIGN
TOOLS
Wei Peng1, John S. Gero2
1Tasmanian ICT Centre, CSIRO ICT Centre, Australia
2Krasnow Institute for Advanced Study and Volgenau School of Information Technology and
Engineering, George Mason University, USA

ABSTRACT
This paper introduces an approach that enables a design tool to learn first-person knowledge through
interactions. A design tool of this kind embodies learning and adaptive behaviours. The contextual
knowledge in using the tool to solve a particular design problem can be captured, made available and
adapted to a designer’s decision-making when he or she is confronted with a similar or a new problem
at a later time. An effect of this is an improvement in design efficacy, in that a design task can be
recognized from interactions and experiences for similar tasks and support can be provided to aid
decision-making. The implemented prototype system is applied to assist the use of an optimization
tool (the Matlab Optimization Toolbox) in design. The system learns knowledge from how Matlab is
utilized in solving various optimization problems and uses the learned concepts to affect the tool’s
future use. Experiments evaluate the effectiveness of this prototype system in recognizing
optimization problems in various design optimization scenarios.

Keywords: First-Person Knowledge, Design Tool, Situated Agent, Interaction, Design Optimization

1 INTRODUCTION
Computer-aided design tools (CAD) were first introduced to assist designers to evaluate the
“goodness” of their creations [1]. They now extend their functionality to include three-dimensional
modelling, computer simulation, analysis, and integration between applications. The effectiveness of a
design tool, which is often associated with the term “efficacy”, refers to the ability to produce a
desired amount of intended effects. Contemporary design tools continue to be built based on a
paradigm that the tool is unchanged by its use [2], [3]. These design tools keep repeating themselves,
irrespective of their interactions with the design environment. The functions are hard-coded during the
development stage as third-person knowledge or engineering science knowledge. Their ability to assist
a designer in a dynamic design process is limited due to:
1. the fixedness this third-person knowledge;
2. the inability to include designer’s experience and;
3. the inability to take account of interactions in the design process, in which designers interact

with their environments in developing designs.
Whilst most research and practice are focused on addressing the first two issues, for example, in
knowledge-based design systems, design education and training, we present an approach to improve
the effectiveness of a design tool by addressing the third point. First-person knowledge, i.e.,
knowledge that a knower would express by a first-person sentence, has been studied in the
philosophical area of phenomenology [4]. Exploring the source of first-person knowledge entails our
concerns of knowing how we experience everyday. First-person knowledge from this perspective
enables us to have goals, to evaluate them and to change them; it therefore underwrites our rational
agency [5]. There are a number of hypotheses which are aimed to explain the possible source of first-
person knowledge, for example introspection and cognitive transformation from a priori knowledge
[4]. We are concerned with developing a computational model that learns first-person knowledge from
a constructivist point of view. Interaction between a software agent and its environment serves as a
source via which first-person knowledge can be constructed.

ICED’07/47 2

This paper introduces an approach that enables a situated agent-based design tool to learn first-person
knowledge through interactions. A design tool of this kind embodies learning and adaptive behaviours.
It is claimed that interaction as one of the fundamental characteristic of a design process can be
enhanced by taking account of the first-person knowledge that is developed based on first-person
interaction with the environment. The contextual knowledge in using the tool to solve a particular
design problem can be captured, made available and adapted to a designer’s decision-making when he
or she is confronted with a similar or a new problem at a later time. This approach draws concepts
from situated cognition [6] to develop a computation model of a design interaction tool [7], which
learns by its use. A situated agent wraps around a design tool and constructs concepts from the
interactions between the agent, the design problem and the use of the tool [8]. A situated system uses a
constructive memory model [9] to create anticipations which can go beyond contextual information
and guide design interactions. We explore the effect of a situated agent in relation to design efficacy,
in that a design task can be recognized from interactions and experiences for similar tasks and support
can be provided to aid decision-making. This research is presented within a design optimization
domain.

2 DESIGN OPTIMIZATION APPLICATION DOMAIN
Design optimization is concerned with identifying optimal design solutions which meet design
objectives while conforming to design constraints. The formal statement of the optimization problem
can be denoted as [10]:

Minimize f(x) (1)

Subject to:

h(x)= 0 (2)

g(x)≤ 0 (3)
nRx ⊆∈ χ (4)

where in expression (1), the scalar objective function f(x) is the criterion among different alternatives.
The vector-valued functions h = (h1, h2,…, hm1)T and g = (g1, g2,…, gm2)T are the functional constraints
which are described in equations (2) and (3) as h(x) and g(x). As shown in expression (4), x is the n-
dimensional vector of design variables belonging to a subset χ of the n-dimensional real space Rn.
Many research works in design optimization focus on providing new algorithms to improve the
efficiency for the process of searching for optimal designs [11], [12]. As a consequence, a large
variety of new optimization algorithms have been developed and are commercially available. Many
design optimization tools target gathering a variety of mathematical programming algorithms and
providing the means for the user to access them to solve design problems.1 For example, Matlab
Optimization Toolbox 3.02 includes a variety of functions for linear programming, quadratic
programming, nonlinear optimization and nonlinear least squares, etc. Designers rely on the
experience that they have built up through years of practice and use of these optimization tools to
optimize a design. The outcome of this design process is constrained by their design knowledge.
Recent research [13] identifies a number of issues that have not been well-addressed in a design
optimization process:
1. lack of transfer of earlier results as the design changes;
2. lack of domain knowledge in computational tools;
3. lack of task knowledge in computational tools;
4. lack of feedback into process strategies in the tool.
Knowledge-based design systems and machine learning techniques emerged in a wide range of design
areas (including design optimization) to assist the design decision-making process [14], [15], [16],
[17]. These systems showed potential in providing knowledge-based support in design. However,
these researches do not integrate “interaction” in the design model, which is viewed as a critical notion
that provides the opportunity for change and adaptation – both in the internal knowledge of an

1 http://www-fp.mcs.anl.gov/otc/Guide/SoftwareGuide/.
2 http://www.mathworks.com/products/optimization/.

ICED’07/47 3

optimization system and in the design it is operating on [13]. Interaction in design optimization
establishes the relationships between the designer, the problem formation, the tool and the result.
Figure 1 introduces the concept of interactions as the key element of a design optimization process. A
designer interacts with its environment which encompasses the design tool, the design problem and the
design result in developing a design. Such a process consists of sequence of situated acts [18].

Interaction

Designer

Result Problem
Formation

Tool

Modelling Interactions during
which a designer uses the tool
in optimizing a design problem

Figure 1. Interaction-based view of design optimization (adapted from Figure 3. [13])

 Interactions provide a means for design optimization tools to flexibly construct task knowledge and
domain knowledge that is adapted to the classes of optimization problems they are exposed to during
those interactions [13]. Our aim is to construct a computational model that is able to learn first-person
knowledge from using the tool and adapt the knowledge to the use of the tool while a designer is
optimizing a design, and as a consequence offers assistance to the designer in his or her interactions in
designing. We model the section of interactions during which a designer uses a tool to solve an
optimization problem (shown as the grey square area enclosed by dashed lines in Figure 1). The
implemented prototype system is applied to assist the use of an optimization tool (the Matlab
Optimization Toolbox) in design. The system learns knowledge from how Matlab is utilized in solving
various optimization problems and uses the learned concepts to help a designer in identifying various
design optimization problems during the tool’s later use. The identification of optimization problems
is fundamental to the design optimization process [19]. Some of the knowledge required for
recognition of the optimization problem can be expressed in terms of semantic relationships between
design elements. An example of such knowledge is illustrated in Table 1. Design efficacy can be
measured through the correctness in recognizing optimization problems in heterogeneous design
scenarios.

Table 1. An example of knowledge required in recognition of an optimization problem
(after [19])

if all the variables are of continuous type
and all the constraints are linear
and the objective function is linear
then conclude that the model is linear programming
and execute linear programming algorithm

3 SITUATEDNESS AND CONSTRUCTIVE MEMORY
This research is founded on two basic concepts: “situatedness” and “constructive memory”. The
concept of “situatedness” has its roots in works of empirical naturalism [20] and cognitive psychology
[21]. It has been investigated in many different areas with diverse terms, such as “situated action” [22]
and “situated cognition” [6]. Vygotsky contributed to the concept of “situatedness” through activity
theory: defining that activities of the mind cannot be separated from overt behaviour, or from the
social context in which they occur. Social and mental structures interpenetrate each other [23], [24].
Situatedness involves both the context and the observer’s experiences and the interactions between

ICED’07/47 4

them. Situatedness is paraphrased as “where you are when you do what you do matters” [18]. It is
inseparable from interactions in which knowledge is dynamically constructed.
Memory in computational systems often refers to a place that holds data and information called
“memories”. It is indexed so as to be queried more efficiently afterwards. However, we utilize a
different theory of memory. In Clancey’s review of Rosenfield’s The Invention of Memory, he
emphasized that memory is not a place where descriptions of what we have done or said before are
stored, but is indistinguishable from our capability to make sense, to learn a new skill, to compose
something new [25]. This is the essence of Bartlett’s model of constructive memory [21]. The notion
of a constructive memory reflects how a system adapts to its environment [26]. A constructive
memory model [9] provides a conceptual framework for us, within which we may utilize the concept
of “situatedness” in a software agent. “Memories are constructed initially from that experience in
response to demands for a memory of that experience but the construction of the memory includes the
situation pertaining at the time of the demand for the memory” [9]. Two operational characteristics of
a constructive memory model are constructive learning and experiential grounding mechanisms [27].
Constructive learning is the means that an agent utilizes to develop its experience. It has an effect that
brings changes in the structure of the memory system. This allows an agent to accommodate a new
experience in an a posteriori manner. Experiential grounding is concerned with the provision of
meanings to the experiences processed by an artificial agent [27]. It is similar to historical grounding
[28], which considers the consequence of the utility of an experience in determining its meaning.
According to Liew and Gero [27], the basic operations for a constructive memory model consist of:
• cueing3: the memory system is initially cued by a demand from the current situation;
• activation and selection: multiple experiences are activated, with only one being selected;
• memory construction: memory is constructed based on the selected experience; and
• incorporation: the constructed memory is incorporated into the system;
Situatedness and constructive memory entail the way in which first-person knowledge is constructed
and grounded into experience.

4 GROUNDING EXPERIENTIAL ANTICIPATIONS IN SITUATED AGENTS
Symbolic grounding explores the means that the semantic interpretation of a symbol system can be
made intrinsic to that system rather than relying on the meanings in the head of an external interpreter
or observer [29]. An agent grounds its behaviour and representations in its interaction with the
environment. The behaviour of the agent is intrinsically meaningful to itself [30]. Experiential
grounding [27] had been proposed as a process that verifies the usefulness of a related experience in
the current situation. It has the effect of increasing the likelihood of a previously cued memory being
re-actived in the current time. Memory here is the computational construct of the cognitive concept of
constructive memory [21]. In this paper, grounding of anticipation refers to the evaluation of whether
a constructed anticipation correctly predicts environmental changes. We present how concepts can be
formed through grounding anticipations in situated agents.

4.1 Situated Agency
A situated agent is a software agent that is founded on the notion of “situatedness”. Situatedness in a
software agent can be modeled as the interaction of three worlds [31], Figure 2. The external world
denotes the world that consists of external events outside the agent. The interpreted world is the world
constructed inside the agent. This internal world is composed of sensory experiences, percepts and
proto-concepts. It is created through interpretation, where the intermediate percepts are transferred into
or constructed as proto-concepts, which depict the initial meaning attached to the environment events
as anticipations. The expected world is derived from the interpreted world. Through a process called
focusing, the agent focuses on some aspects of the interpreted world, e.g. proto-concepts, and derives
anticipations that predict future states of the external world. The process of action affects the external
world based on anticipations constructed in the agent’s self-organized focusing or refocusing
processes. We hold that situatedness not only involves a recursive linkage between these three worlds,
it is often accompanied by structural and behavioural adaptation in the interpreted worlds. An external
change may cause the interpreted world to change. This can be achieved by activating or reactivating

3 A cue refers to a stimulus that can be used to activate the agent’s experience to obtain a memory of that
experience.

ICED’07/47 5

the agent’s experience. With reinterpretations, the agent can refocus or create a new anticipation to
affect the external world. Based on the grounding of anticipations, the agent can develop concepts and
adaptive behaviours over time.

Interpreted
World

Expected
World

 (within Interpreted
 World)

Focussing
Refocusing

Action Interpretation
Reinterpretation

External
World

Figure 2. Situatedness as interaction of three worlds (after Fig. 2. [31])

A situated agent contains sensors, effectors, experience and a concept formation engine, which
consists of a perceptor, a cue_Maker, a conceptor, a hypothesizer, a validator and related processes.
Sensors gather events from the environment. In the following example these events include key
strokes of objective functions, the users’ selections of design optimization algorithms, etc. Sense-data
takes the form of a sequence of actions and their initial descriptions. For instance, sense-data can be
expressed as:

S(t) = { ……“click on objective function text field”, key stroke of “x”, “(”, “1”, “)”, ……} (5)

The perceptor processes sense-data and groups them into multimodal percepts, which are intermediate
data structures illustrating environment states at a particular time. Percepts are structured as triplets:

P(t) = {Object, Property, Values of properties} (6)

For example, a perceptual data P1 can be described as {Objective Function Object,
Objective_Function, “2x(1)+x(2)”}. The cue_Maker generates cues that can be used to activate the
agent’s experience. Anticipation generation is the process that is associated with this activation.
Anticipation generation is the process of generating anticipation about potential environment changes.
Anticipation is related to the agent’s view about possible consequences of certain actions and affects
its decision-making. When an unexpected condition is recognized, it needs to be reinterpreted [32].
Reinterpretation occurs in the hypothesizing process, in which focused concepts are selected for
anticipation generation and the causalities of failures are located in order to modify the anticipations.
The hypothesizer generates a hypothesis from current learned proto-concepts. It is where
reinterpretation takes place to allow the agent to learn in a “trial and error” manner. A situated agent
reinterprets its environment using hypotheses which are explanations that are deduced from its domain
knowledge (usually conceptual). An agent needs to refocus on or construct a new proto-concept based
on its hypotheses.
The conceptor categorizes the agent’s experience to form concepts. Conception is the process running
in the conceptor. Conception consists of three basic functions: conceptual labelling (C1), constructive
learning (C2) and induction (C3). Conceptual labelling creates proto-concepts based on experiential
responses to an environment cue. This includes deriving anticipations from these responses and
identifying the target. Constructive learning allows the agent to accumulate lower level experiences.
Induction can generalise abstractions from the lower level experience and is responsible for generating
conceptual knowledge structures.
The validator pulls information from the environment and examines whether the environmental
changes are consistent with the agent’s anticipations. An agent needs to validate its hypotheses in
interactions. An effector is the unit via which the agent brings changes to environments through its
actions.

ICED’07/47 6

4.2 Interpretations and Anticipations
Research results from cognitive development stress an inextricable link between contextual constraints
and the acquisition of knowledge. The contemporary view treats cognition as typically situated in a
social and physical context [33]. A major concern for this study is to build a link between context and
the agent’s situated concepts formed from interactions – first-person constructs. Learning concepts
from contexts involves processes that construct the agent’s interpretations and anticipations about a
context, and in turn validates the constructed concepts based on their usefulness in predicting and
affecting a context in time. These processes include sensation, perception, anticipation generation,
conception, hypothesising, action and validation. Here we discuss three scenarios that show how a
context can be interpreted (or re-interpreted) and constructed into a concept. The interpretation is
concerned with associating an initial meaning with a context. Anticipation is the process of an agent
making decisions based on predictions, and expectations about the future.4 The anticipation refers to
predicting future states of the environment based on the interpretation of the context.

Sense-data

Interpreted
Perceptual
Categories

Prediction
Future
States

Interpretation
+

Anticipation

Context

Interpretation

Anticipation

Proto-concept

Action + Validation

Cueing
Anticipation
Generation

Conception

Sensation
Perception

Moving Context to Proto-concept
Scenario I

Figure 3. Scenario I, in which the agent moves a context into a proto-concept

Sense-data

Reinterpreted
Perceptual
Categories

Prediction
Future
States

Reinterpretation
+

Re-anticipation

Context

Reinterpretation

Re-anticipation

Proto-concept

Action + Validation

Cueing
Anticipation
Generation

Conception

Sensation
Perception

Moving Context to Proto-concept
Scenario II

Figure 4. Moving a context into a proto-concept, Scenario II

Figure 3 presents a scenario in which a context in terms of sense-data is constructed into a proto-
concept. Through sensation and perception processes, the contextual information is interpreted based
on the agent’s experience. With this initial transformation, the agent creates a mapping between the
context from its external world and its internal world. It can therefore cue its memory to generate

4 http://en.wikipedia.org/wiki/Anticipation.

ICED’07/47 7

anticipations for the interpreted perceptual category. The conception process constructs a proto-
concept based on the interpreted and the anticipated information. The agent then uses action processes
to affect the environment. Through comparing its anticipation with what actually occurs in the
environment, the agent is able to evaluate the proto-concept.

Hypothesising

Cueing
Anticipation
Generation

Sense-data

Hypotheses

Prediction
Future
States

Re-Interpretation
+

Re-Anticipation

Context

Explanation

Re-anticipation

Proto-concept

Action + Validation

Conception

Sensation
Perception

Re-interpretation

Moving Context to Proto-concept
Scenario III

Re-interpreted
Perceptual
Categories

Figure 5. Moving a context into a proto-concept, Scenario III

Similar to Scenario I, in Scenario II the agent already has related experiences that can be used to
construct a memory of a context. The difference between Scenarios I and II is timing. Scenario II
describes that an agent reinterpreting a context when an invalid proto-concept is detected and
discarded, as shown in Figure 4. Re-anticipations represent the agent’s new predictions for the
environment. It is produced through cueing and activating the memory. The constructed proto-concept
can be regarded as an adaptive knowledge structure for a context over time. Scenario III, Figure 5,
depicts how an agent comes up with a new concept when there is no mapping between the context
detected and its experience.

Table 2. An example for Scenario III. Target concept is the concept to be learned (⌐C
means not C)

Context Time t Time t + Δt
Sense-data User inputs a, b

(symbols that represent
features a, b)

User inputs a, b, ⌐c, f (new
combination of symbolic
representation of features)

Agent’s
Experience

• a, b, c, ⌐c, d, e, f, h, j, k correspond to A, B, C, ⌐C, D, E, F,
H, J, K (knowledge representations of symbols)

• A, B, C, D, Target concept E (Experience of E and related
representations of symbols)

• A, B, C, F, Target concept J (Experience of J and related
representations of symbols)

• A, B, ⌐C, F, H, J, Target concept K (Experience of K and
related representations of symbols)

• K ⌐C (K cannot have C)
Interpretation
Reinterpretation

A and B A, B, ⌐C, F

Explanation None Not an E, Not a J, May be a K
Anticipation
Re-anticipation

A, B, C, D, Target
concept E

A, B, ⌐C, F, H, J, Target concept
K

Validity of
Proto-concept

False True

ICED’07/47 8

A new factor is included in Scenario III to provide explanations to compensate for the lack of mapping
between the agent’s experience and the context. The agent uses its experience to perform a reverse-
engineering process, in which the context and interrelationships are analysed and represented in a new
concept or the same concept with a different level of abstraction. A simple example is shown in Table
2.
An anticipatory system contains a predictive model of itself and its environment that enables it to
adapt based on that model [34]. Anticipations are essential for an agent to be able to adapt to its
environment. Anticipations bring forth the agent’s experience and enable it to go beyond explicitly
presented contexts. The interpretations and anticipations for a context form an instance of a proto-
concept, which provides a snapshot of the agent’s first-person representation of that context. The
validity of the constructed proto-concepts can be evaluated through examining their anticipations in
interactions. A valid proto-concept can correctly predict the environmental changes.

4.3 Modelling Experience of Situated Agents
Experience comprises the knowledge of some activity or some event gained through direct
involvement in that activity or event. This paper represents experience as structures. They can be
classified into three categories.
1. A sensory experience holds discrete symbolic labels for discerning sense-data. They are the

built-in features for sensors. Each sensor captures a particular type of information. Once an
environment stimulus is detected, the agent attaches an initial meaning to it, based on its sensory
experience;

2. A perceptual experience captures historical representations of perceptual categories and their
interrelationships, including entities, properties and entity–property relationships with degrees
of beliefs;

3. A conceptual experience comprises the grounded invariants over the lower level perceptual
experience. A conceptual experience explicitly states the regularities over the past observations
of perceptual instances.

Experiential grounding [27] is implemented via a weight adaptation process (Wa), which adjusts the
weights of each excitatory connection of the valid concept of a Constructive Interactive Activation and
Competition (CIAC) neural network [35], which is an extension of an IAC neural network [36], so that
those nodes that fire together become more strongly connected.

5 SITUATED AGENT-BASED DESIGN OPTIMIZATION TOOL
This section describes the general architecture of a situated agent-based design optimization tool. A
situated agent wraps around an existing design optimization tool. A user accesses a design tool via this
wrapper, where the situated agent senses the events performed by that user. The situated agent uses its
experience and concept formation engine to generate a concept, which modifies the tool’s behaviour in
later designing. The user can also directly communicate with the agent to obtain additional
information. Such a framework provides the means that allow the agent to incrementally learn first-
person knowledge. The system consists of two major components: a situated agent and a tool platform
which includes a design optimization tool, a tool wrapper and interface agents, Figure 6. In this
research, Matlab Optimization Toolbox (version 3.0.1) was chosen as the design optimization
platform. It is a collection of functions that extend the capability of the MATLAB numeric computing
environment (Release 14).
The toolbox includes routines for a variety of optimization classes, including unconstrained and
constrained nonlinear minimization, quadratic and linear programming, and nonlinear optimization.
Via the MATLAB command line, Matlab users use a scripting language called M-file to define and to
solve optimization models. The interface agent, which consists of a Callback agent and an M-scripting
agent, enables both users and the situated agent to operate on the engines in the Matlab Optimization
Toolbox. A tool wrapper serves as an interface between the user, the tool and agents. It provides a
simplified and efficient way to perform design optimization using the Matlab Optimization Toolbox.

ICED’07/47 9

Situated Agent

Interface Agent

Matlab
(Optimisation

Toolbox)

Wrapper
(ToolWrapper

class) M-scripting
Agent

User

Callback
Agent

Sensor

Effector

Concept
Formation

Experience

Figure 6. Situated agent-based design optimization tool (after Fig. 3. [8])

6 A COMPARISON EXPERIMENT IN DESIGN OPTIMIZATION
The purpose of this experiment is to evaluate the implemented prototype system through examining
whether the proposed approach can learn new concepts from interactions, and evaluating the efficacy
of the system in various design optimization scenarios. We measure the system’s performance in
assisting a design optimization tool to recognize novel design optimization problems compared to
other approaches.
This test focuses on investigating the performance of various systems, namely a static system, a
reactive system and a situated system, in learning to recognize design optimization problems in
heterogeneous design optimization scenarios. A sequence of 15 design scenarios is created and
adopted. Each scenario represents a design task which is further composed of a number of design
actions. For example, a typical design optimization task consists of a number of actions:
• defining objective function;
• identifying objective function type;
• defining design variables, variable types;
• describing design constraints, constraint types;
• defining gradients of objective function and constraints;
• defining matrices, such as Hessian matrix and its type, A, b matrices (only available for Matlab

users).
• selecting optimizers;
• submitting design problem or editing design problem; and
• submitting feedback on agent’s outputs.
To support the test, a sequence of 15 design scenarios is created. The sequence of tasks is:
• {L, Q, Q, L, NL, Q, NL, L, L, NL, Q, Q, L, L, L}
 “Q”, “L” and “NL” represent quadratic, linear and nonlinear design optimization problems
respectively. The initial experience of the agent holds one instance of a design optimization scenario
solved by a quadratic programming optimizer.
A static system can only use the predefined knowledge to predict a design task. A reactive system uses
a priori knowledge to respond to an environmental cue. It can also learn via constructive learning,
provided it encounters a new design problem. A situated system not only employs its existing
experience to react, it also reflects using the hypotheses created based on the accumulated conceptual
knowledge.
The performance is defined as the correctness of the system’s response to an environmental cue, which
predicts an interaction situation, and hence assists the applied design task. We use prediction success
rate (Ps) to measure the overall performance of a system in this test:

testtheinspredictionofnumbersTotal
spredictioncorrectofNumberPs = (7)

ICED’07/47 10

Figure 7. Prediction success rates for a static system (a); a reactive system (b) and a
situated system (c) (white squares represent absolute results for predicting optimization

problems, 1.0 is for correct predictions and 0.0 for otherwise)

The prediction success rate corresponds to the percentage of correctly predicted examples over total
test examples. Based on results measured from this test, we can calculate prediction success rates for
each system. As shown in the performance chart, Figure 7, a situated system produces a prediction
success rate of 0.8 compared to a rate of 0.67 for a reactive system and 0.33 for a static system. We
conjecture that the reason for this is the ability of a situated system to generalize across observations
and subsequently to deduce explanations for environmental changes. It is also noted that the agent uses
the conceptual knowledge to hypothesize and reflect from Task 10, thus providing better performance
from that point on.

7 CONCLUSION
This paper presents an approach that enables a design tool to learn first-person knowledge through
interactions. A situated agent-based design optimization tool can learn to recognize new design
optimization problems and adapt the learned concepts to various circumstances. Experimental results
show that the proposed approach has a positive impact on improving efficacy of a design tool in
assisting designers in their tasks. In conclusion, the approach plays a potential role in enhancing
design effectiveness through introducing mechanisms that allow a design tool to learn first-person
knowledge whist a designer is utilizing the tool in design.

REFERENCES
[1] Kalay, Y.E. The future of CAAD: From computer-aided design to computer-aided

collaboration. In Proceedings of the Eighth International Conference on Computer-Aided

Static System

0.0
0.2
0.4
0.6
0.8
1.0

1 3 5 7 9 11 13 15
Task
(a)

P
er

fo
rm

an
ce

Reactive System

0.0
0.2
0.4
0.6
0.8
1.0

1 3 5 7 9 11 13 15
Task
(b)

P
er

fo
rm

an
ce

Situated System

0.0
0.2
0.4
0.6
0.8
1.0

1 3 5 7 9 11 13 15
Task
(c)

P
er

fo
rm

an
ce

ICED’07/47 11

Architectural Design Futures, 1999, pp.14-39, (Kluwer Academic Publishers, Atlanta,
Georgia).

[2] Gero, J.S. Design tools that learn: A possible CAD future. In Kumar, B., ed. Information
Processing in Civil and Structural Design, 1996, pp.17-22 (Civil-Comp Press, Edinburgh).

[3] Gero, J.S. Design tools as situated agents that adapt to their use. In Dokonal, W. and
Hirschberg, U., ed. eCAADe21, 2003, pp.177-180 (eCAADe, Graz University of Technology).

[4] Thomasson, A.L. First-person knowledge in phenomenology. In Smith, D.W. and Thomasson,
A.L., ed. Phenomenology and Philosophy of Mind, 2005 (Oxford University Press, Oxford).

[5] Baker, L.R. First-person knowledge. In Sanford, A.J., ed. The Nature and Limits of Human
Understanding: The Gifford Lectures, University of Glasgow, 2001, pp.165-184 (T.&T. Clark,
London).

[6] Clancey, W. Situated Cognition: On Human Knowledge and Computer Representations, 1997
(Cambridge University Press, Cambridge).

[7] Peng, W. A Design Interaction Tool that Adapts. PhD Thesis, Key Centre of Design Computing
and Cognition, 2006, 200pp. (University of Sydney, Sydney).

[8] Peng, W. and Gero, J.S. Concept formation in a design optimization tool. In Leeuwen, J.V. and
Timmermans, H., ed. Innovations in Design Decision Support Systems in Architecture and
Urban Planning, 2006, pp.293-308 (Springer, Berlin).

[9] Gero, J.S. Constructive memory in design thinking. In Goldschmidt, G. and Porter, W., ed.
Design Thinking Research Symposium: Design Representation, 1999, pp.29-35 (MIT,
Cambridge).

[10] Papalambros, P.Y. The optimization paradigm in engineering design: Promises and challenges,
Computer-aided Design, 2002, 34, 939-951.

[11] Papalambros, P.Y. and Wilde, D.J. Principles of Optimal Design: Modeling and Computation,
2000 (Cambridge University Press, Cambridge, UK).

[12] Pardalos P.M. and Resende M.G.C. (Ed.) Handbook of Applied Optimization, 2002 (Oxford
University Press, New York).

[13] Gero, J.S. and Kannengiesser, U. A framework for situated design optimization. In Leeuwen,
J.V. and Timmermans, H., ed. Innovations in Design Decision Support Systems in Architecture
and Urban Planning, 2006, pp.309-324 (Springer, Berlin).

[14] Balachandran, M.B. A Model for Knowledge-Based Design Optimization, PhD Thesis, 1988
(University of Sydney, Sydney).

[15] Hoeltzel, D.A. and Chieng, W.H. Factors that affect planning in a knowledge-based system for
mechanical engineering design optimization with application to the design of mechanical power
transmissions, Engineering with Computers, 1989, 5, 47-62.

[16] Reich, Y. and Fenves, S. The formation and use of abstract concepts in design. In Fisher, D.,
Pazzani, M. and Langley, P., ed. Concept Formation: Knowledge and Experience in
Unsupervised Learning, 1991, pp.323-353 (Morgan Kaufmann, San Mateo, CA).

[17] Reich, Y. The development of BRIDGER: A methodological study of research in the use of
machine learning in design, Artificial Intelligence in Engineering, 1993, 8(3), 165-181.

[18] Gero, J.S. Conceptual designing as a sequence of situated acts. In Smith, I., ed. Artificial
Intelligence in Structural Engineering, 1998, pp.165-177 (Springer, Berlin).

[19] Radford, A.D. and Gero, J.S. Design by Optimization in Architecture and Building, 1988 (Van
Nostrand Reinhold, New York).

[20] Dewey, J. The reflex arc concept in psychology, Psychological Review, 1896 reprinted in 1981,
3, 357-370.

[21] Bartlett, F.C. Remembering: A Study in Experimental and Social Psychology, 1932 reprinted in
1977 (Cambridge University Press, Cambridge).

[22] Suchman, L.A. Plans and Situated Actions: The problem of human-machine communication,
1987 (Cambridge University Press, Cambridge).

[23] Vygotsky, L.S. Mind in Society: The Development of Higher Psychological Processes, 1934
reprinted in 1978 (Harvard University Press, Cambridge, MA).

[24] Clancey, W. A tutorial on situated learning. In Self, J., ed. Proceedings of the International
Conference on Computers and Education, 1995, pp.49-70 (Charlottesville, VA, AACE,
Taiwan).

[25] Clancey, W. Review of Rosenfield's "The Invention of Memory". Artificial Intelligence, 1991,

ICED’07/47 12

50(2), 241-284.
[26] Gero, J.S. and Smith, G.J. A computational framework for concept formation for a situated

design agent, Part B: Constructive memory, Working Paper, 2006 (Key Centre of Design
Computing and Cognition, University of Sydney).

[27] Liew, P. and Gero, J.S. Constructive memory for situated agents. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, AIEDAM, 2004, 18(2), 163-198.

[28] Nehaniv, C. and Dautenhahn, K. Embodiment and memories - Algebras of time and history for
autobiographic agents. In Proceedings of 14th European Meeting on Cybernetics and Systems
Research, EMCSR'98, 1998, pp.651-656 (Austrian Society for Cybernetic Studies).

[29] Harnad, S. The symbol grounding problem. Physica D, 1990, 42, 335-346.
[30] Ziemke, T. Rethinking grounding. In Riegler, A., Peschl, M. and Stein, A., ed. Understanding

Representations in the Cognitive Sciences, 1999, pp.177-190 (Plenum Publisher, New York).
[31] Gero, J.S. and Kannengiesser, U. The situated function-behaviour-structure framework. Design

Studies, 2004, 25(4), 373-391.
[32] Gero, J.S. and Fujii, H. A computational framework for concept formation in a situated design

agent. Knowledge-Based Systems, 2000, 13(6), 361-368.
[33] Butterworth, G. Context and cognition in models of cognitive growth. In Butterworth, G. and

Light, P., ed. Context and Cognition: Ways of Learning and Knowing, 1993, pp.1-13 (Lawrence
Erlbaum Associates, Hillsdale, NJ).

[34] Rosen, R. Anticipatory Systems, 1985 (Pergamon Press).
[35] Peng, W. and Gero, J.S. Using a constructive interactive activation and competition neural

network to construct a situated agent's experience. In Qiang, Y. and Webb, G., ed. PRICAI
2006: Trends in Artificial Intelligence, 2006, pp.21-30 (Springer).

[36] McClelland, J.L. Retrieving general and specific information from stored knowledge of
specifics. In Proceedings of the Third Annual Meeting of the Cognitive Science Society, 1981,
pp.170-172 (Erlbaum, Hillsdale, NJ).

Contact: Dr. Wei Peng
Commonwealth Scientific and Industrial Research Organisation (CSIRO) ICT Centre
Tasmanian ICT Centre
(The Tasmanian ICT Centre is jointly funded by the Australian Government through the Intelligent
Island Program and the CSIRO. The Intelligent Island Program is administered by the Tasmanian
Department of Economic Development)
Castray Esplanade, Hobart, TAS 7001
Australia
Tel: +61-3-6232-5536
Fax: +61-2-6232-5125
Email: wei.peng@csiro.au

Contact: Prof. John S Gero
George Mason University
Krasnow Institute for Advanced Study and Volgenau School of Information Technology and
Engineering
Fairfax, VA 22030 USA
Tel: +1-703-415-6503
Email john@johngero.com
http://mason.gmu.edu/~jgero/

