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ABSTRACT 
This paper introduces an approach that enables a design tool to learn first-person knowledge through 
interactions. A design tool of this kind embodies learning and adaptive behaviours. The contextual 
knowledge in using the tool to solve a particular design problem can be captured, made available and 
adapted to a designer’s decision-making when he or she is confronted with a similar or a new problem 
at a later time. An effect of this is an improvement in design efficacy, in that a design task can be 
recognized from interactions and experiences for similar tasks and support can be provided to aid 
decision-making. The implemented prototype system is applied to assist the use of an optimization 
tool (the Matlab Optimization Toolbox) in design. The system learns knowledge from how Matlab is 
utilized in solving various optimization problems and uses the learned concepts to affect the tool’s 
future use. Experiments evaluate the effectiveness of this prototype system in recognizing 
optimization problems in various design optimization scenarios. 
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1 INTRODUCTION 
Computer-aided design tools (CAD) were first introduced to assist designers to evaluate the 
“goodness” of their creations [1]. They now extend their functionality to include three-dimensional 
modelling, computer simulation, analysis, and integration between applications. The effectiveness of a 
design tool, which is often associated with the term “efficacy”, refers to the ability to produce a 
desired amount of intended effects. Contemporary design tools continue to be built based on a 
paradigm that the tool is unchanged by its use [2], [3]. These design tools keep repeating themselves, 
irrespective of their interactions with the design environment. The functions are hard-coded during the 
development stage as third-person knowledge or engineering science knowledge. Their ability to assist 
a designer in a dynamic design process is limited due to:  
1. the fixedness this third-person knowledge;  
2. the inability to include designer’s experience and;  
3. the inability to take account of interactions in the design process, in which designers interact 

with their environments in developing designs.  
Whilst most research and practice are focused on addressing the first two issues, for example, in 
knowledge-based design systems, design education and training, we present an approach to improve 
the effectiveness of a design tool by addressing the third point. First-person knowledge, i.e., 
knowledge that a knower would express by a first-person sentence, has been studied in the 
philosophical area of phenomenology [4]. Exploring the source of first-person knowledge entails our 
concerns of knowing how we experience everyday. First-person knowledge from this perspective 
enables us to have goals, to evaluate them and to change them; it therefore underwrites our rational 
agency [5]. There are a number of hypotheses which are aimed to explain the possible source of first-
person knowledge, for example introspection and cognitive transformation from a  priori knowledge 
[4]. We are concerned with developing a computational model that learns first-person knowledge from 
a constructivist point of view. Interaction between a software agent and its environment serves as a 
source via which first-person knowledge can be constructed.     
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This paper introduces an approach that enables a situated agent-based design tool to learn first-person 
knowledge through interactions. A design tool of this kind embodies learning and adaptive behaviours. 
It is claimed that interaction as one of the fundamental characteristic of a design process can be 
enhanced by taking account of the first-person knowledge that is developed based on first-person 
interaction with the environment. The contextual knowledge in using the tool to solve a particular 
design problem can be captured, made available and adapted to a designer’s decision-making when he 
or she is confronted with a similar or a new problem at a later time. This approach draws concepts 
from situated cognition [6] to develop a computation model of a design interaction tool [7], which 
learns by its use. A situated agent wraps around a design tool and constructs concepts from the 
interactions between the agent, the design problem and the use of the tool [8]. A situated system uses a 
constructive memory model [9] to create anticipations which can go beyond contextual information 
and guide design interactions. We explore the effect of a situated agent in relation to design efficacy, 
in that a design task can be recognized from interactions and experiences for similar tasks and support 
can be provided to aid decision-making. This research is presented within a design optimization 
domain.  

2 DESIGN OPTIMIZATION APPLICATION DOMAIN 
Design optimization is concerned with identifying optimal design solutions which meet design 
objectives while conforming to design constraints. The formal statement of the optimization problem 
can be denoted as [10]: 

Minimize f(x) (1) 

Subject to: 

h(x)= 0 (2) 

g(x)≤ 0 (3) 
nRx ⊆∈ χ   (4) 

where in expression (1), the scalar objective function f(x) is the criterion among different alternatives. 
The vector-valued functions h = (h1, h2,…, hm1)T and g = (g1, g2,…, gm2)T are the functional constraints 
which are described in equations (2) and (3) as h(x) and g(x). As shown in expression (4), x is the n-
dimensional vector of design variables belonging to a subset χ of the n-dimensional real space Rn. 
Many research works in design optimization focus on providing new algorithms to improve the 
efficiency for the process of searching for optimal designs [11], [12]. As a consequence, a large 
variety of new optimization algorithms have been developed and are commercially available. Many 
design optimization tools target gathering a variety of mathematical programming algorithms and 
providing the means for the user to access them to solve design problems.1 For example, Matlab 
Optimization Toolbox 3.02 includes a variety of functions for linear programming, quadratic 
programming, nonlinear optimization and nonlinear least squares, etc. Designers rely on the 
experience that they have built up through years of practice and use of these optimization tools to 
optimize a design. The outcome of this design process is constrained by their design knowledge. 
Recent research [13] identifies a number of issues that have not been well-addressed in a design 
optimization process:  
1. lack of transfer of earlier results as the design changes; 
2. lack of domain knowledge in computational tools; 
3. lack of task knowledge in computational tools; 
4. lack of feedback into process strategies in the tool. 
Knowledge-based design systems and machine learning techniques emerged in a wide range of design 
areas (including design optimization) to assist the design decision-making process [14], [15], [16], 
[17]. These systems showed potential in providing knowledge-based support in design. However, 
these researches do not integrate “interaction” in the design model, which is viewed as a critical notion 
that provides the opportunity for change and adaptation – both in the internal knowledge of an 
                                                      
1 http://www-fp.mcs.anl.gov/otc/Guide/SoftwareGuide/.  
2 http://www.mathworks.com/products/optimization/. 
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optimization system and in the design it is operating on [13]. Interaction in design optimization 
establishes the relationships between the designer, the problem formation, the tool and the result. 
Figure 1 introduces the concept of interactions as the key element of a design optimization process. A 
designer interacts with its environment which encompasses the design tool, the design problem and the 
design result in developing a design. Such a process consists of sequence of situated acts [18].  

 

Interaction 

Designer 

Result Problem  
Formation 

Tool 

 
Modelling Interactions during 
which a designer uses the tool 
in optimizing a design problem 

 
Figure 1. Interaction-based view of design optimization (adapted from Figure 3. [13]) 

 Interactions provide a means for design optimization tools to flexibly construct task knowledge and 
domain knowledge that is adapted to the classes of optimization problems they are exposed to during 
those interactions [13]. Our aim is to construct a computational model that is able to learn first-person 
knowledge from using the tool and adapt the knowledge to the use of the tool while a designer is 
optimizing a design, and as a consequence offers assistance to the designer in his or her interactions in 
designing. We model the section of interactions during which a designer uses a tool to solve an 
optimization problem (shown as the grey square area enclosed by dashed lines in Figure 1). The 
implemented prototype system is applied to assist the use of an optimization tool (the Matlab 
Optimization Toolbox) in design. The system learns knowledge from how Matlab is utilized in solving 
various optimization problems and uses the learned concepts to help a designer in identifying various 
design optimization problems during the tool’s later use. The identification of optimization problems 
is fundamental to the design optimization process [19]. Some of the knowledge required for 
recognition of the optimization problem can be expressed in terms of semantic relationships between 
design elements. An example of such knowledge is illustrated in Table 1. Design efficacy can be 
measured through the correctness in recognizing optimization problems in heterogeneous design 
scenarios. 

Table 1. An example of knowledge required in recognition of an optimization problem 
(after [19]) 

if            all the variables are of continuous type 
and        all the constraints are linear 
and        the objective function is linear 
then       conclude that the model is linear programming 
and        execute linear programming algorithm 

3 SITUATEDNESS AND CONSTRUCTIVE MEMORY 
This research is founded on two basic concepts: “situatedness” and “constructive memory”. The 
concept of “situatedness” has its roots in works of empirical naturalism [20] and cognitive psychology 
[21]. It has been investigated in many different areas with diverse terms, such as “situated action” [22] 
and “situated cognition” [6]. Vygotsky contributed to the concept of “situatedness” through activity 
theory: defining that activities of the mind cannot be separated from overt behaviour, or from the 
social context in which they occur. Social and mental structures interpenetrate each other [23], [24]. 
Situatedness involves both the context and the observer’s experiences and the interactions between 
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them. Situatedness is paraphrased as “where you are when you do what you do matters” [18]. It is 
inseparable from interactions in which knowledge is dynamically constructed.  
Memory in computational systems often refers to a place that holds data and information called 
“memories”. It is indexed so as to be queried more efficiently afterwards. However, we utilize a 
different theory of memory. In Clancey’s review of Rosenfield’s The Invention of Memory, he 
emphasized that memory is not a place where descriptions of what we have done or said before are 
stored, but is indistinguishable from our capability to make sense, to learn a new skill, to compose 
something new [25]. This is the essence of Bartlett’s model of constructive memory [21]. The notion 
of a constructive memory reflects how a system adapts to its environment [26]. A constructive 
memory model [9] provides a conceptual framework for us, within which we may utilize the concept 
of “situatedness” in a software agent. “Memories are constructed initially from that experience in 
response to demands for a memory of that experience but the construction of the memory includes the 
situation pertaining at the time of the demand for the memory” [9]. Two operational characteristics of 
a constructive memory model are constructive learning and experiential grounding mechanisms [27]. 
Constructive learning is the means that an agent utilizes to develop its experience. It has an effect that 
brings changes in the structure of the memory system. This allows an agent to accommodate a new 
experience in an a posteriori manner. Experiential grounding is concerned with the provision of 
meanings to the experiences processed by an artificial agent [27]. It is similar to historical grounding 
[28], which considers the consequence of the utility of an experience in determining its meaning. 
According to Liew and Gero [27], the basic operations for a constructive memory model consist of: 
• cueing3: the memory system is initially cued by a demand from the current situation; 
• activation and selection: multiple experiences are activated, with only one being selected; 
• memory construction: memory is constructed based on the selected experience; and 
• incorporation: the constructed memory is incorporated into the system; 
Situatedness and constructive memory entail the way in which first-person knowledge is constructed 
and grounded into experience. 

4 GROUNDING EXPERIENTIAL ANTICIPATIONS IN SITUATED AGENTS 
Symbolic grounding explores the means that the semantic interpretation of a symbol system can be 
made intrinsic to that system rather than relying on the meanings in the head of an external interpreter 
or observer [29]. An agent grounds its behaviour and representations in its interaction with the 
environment. The behaviour of the agent is intrinsically meaningful to itself [30]. Experiential 
grounding [27] had been proposed as a process that verifies the usefulness of a related experience in 
the current situation. It has the effect of increasing the likelihood of a previously cued memory being 
re-actived in the current time. Memory here is the computational construct of the cognitive concept of 
constructive memory [21]. In this paper, grounding of anticipation refers to the evaluation of whether 
a constructed anticipation correctly predicts environmental changes. We present how concepts can be 
formed through grounding anticipations in situated agents. 

4.1 Situated Agency 
A situated agent is a software agent that is founded on the notion of “situatedness”. Situatedness in a 
software agent can be modeled as the interaction of three worlds [31], Figure 2. The external world 
denotes the world that consists of external events outside the agent. The interpreted world is the world 
constructed inside the agent. This internal world is composed of sensory experiences, percepts and 
proto-concepts. It is created through interpretation, where the intermediate percepts are transferred into 
or constructed as proto-concepts, which depict the initial meaning attached to the environment events 
as anticipations. The expected world is derived from the interpreted world. Through a process called 
focusing, the agent focuses on some aspects of the interpreted world, e.g. proto-concepts, and derives 
anticipations that predict future states of the external world. The process of action affects the external 
world based on anticipations constructed in the agent’s self-organized focusing or refocusing 
processes. We hold that situatedness not only involves a recursive linkage between these three worlds, 
it is often accompanied by structural and behavioural adaptation in the interpreted worlds. An external 
change may cause the interpreted world to change. This can be achieved by activating or reactivating 
                                                      
3 A cue refers to a stimulus that can be used to activate the agent’s experience to obtain a memory of that 
experience. 
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the agent’s experience. With reinterpretations, the agent can refocus or create a new anticipation to 
affect the external world. Based on the grounding of anticipations, the agent can develop concepts and 
adaptive behaviours over time. 
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World 

 
 

Expected 
World 

   (within Interpreted
  World) 

Focussing 
Refocusing 

Action   Interpretation 
Reinterpretation 

 
 

External 
World 

 

Figure 2. Situatedness as interaction of three worlds (after Fig. 2. [31])  

A situated agent contains sensors, effectors, experience and a concept formation engine, which 
consists of a perceptor, a cue_Maker, a conceptor, a hypothesizer, a validator and related processes. 
Sensors gather events from the environment. In the following example these events include key 
strokes of objective functions, the users’ selections of design optimization algorithms, etc. Sense-data 
takes the form of a sequence of actions and their initial descriptions. For instance, sense-data can be 
expressed as:  

S(t) = { ……“click on objective function text field”, key stroke of “x”, “(”, “1”, “)”, ……} (5) 

The perceptor processes sense-data and groups them into multimodal percepts, which are intermediate 
data structures illustrating environment states at a particular time. Percepts are structured as triplets: 

P(t) = {Object, Property, Values of properties} (6) 

For example, a perceptual data P1 can be described as {Objective Function Object, 
Objective_Function, “2x(1)+x(2)”}. The cue_Maker generates cues that can be used to activate the 
agent’s experience. Anticipation generation is the process that is associated with this activation. 
Anticipation generation is the process of generating anticipation about potential environment changes. 
Anticipation is related to the agent’s view about possible consequences of certain actions and affects 
its decision-making. When an unexpected condition is recognized, it needs to be reinterpreted [32]. 
Reinterpretation occurs in the hypothesizing process, in which focused concepts are selected for 
anticipation generation and the causalities of failures are located in order to modify the anticipations. 
The hypothesizer generates a hypothesis from current learned proto-concepts. It is where 
reinterpretation takes place to allow the agent to learn in a “trial and error” manner. A situated agent 
reinterprets its environment using hypotheses which are explanations that are deduced from its domain 
knowledge (usually conceptual). An agent needs to refocus on or construct a new proto-concept based 
on its hypotheses.  
The conceptor categorizes the agent’s experience to form concepts. Conception is the process running 
in the conceptor. Conception consists of three basic functions: conceptual labelling (C1), constructive 
learning (C2) and induction (C3). Conceptual labelling creates proto-concepts based on experiential 
responses to an environment cue. This includes deriving anticipations from these responses and 
identifying the target. Constructive learning allows the agent to accumulate lower level experiences. 
Induction can generalise abstractions from the lower level experience and is responsible for generating 
conceptual knowledge structures.  
The validator pulls information from the environment and examines whether the environmental 
changes are consistent with the agent’s anticipations. An agent needs to validate its hypotheses in 
interactions. An effector is the unit via which the agent brings changes to environments through its 
actions. 
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4.2 Interpretations and Anticipations 
Research results from cognitive development stress an inextricable link between contextual constraints 
and the acquisition of knowledge. The contemporary view treats cognition as typically situated in a 
social and physical context [33]. A major concern for this study is to build a link between context and 
the agent’s situated concepts formed from interactions – first-person constructs. Learning concepts 
from contexts involves processes that construct the agent’s interpretations and anticipations about a 
context, and in turn validates the constructed concepts based on their usefulness in predicting and 
affecting a context in time. These processes include sensation, perception, anticipation generation, 
conception, hypothesising, action and validation. Here we discuss three scenarios that show how a 
context can be interpreted (or re-interpreted) and constructed into a concept. The interpretation is 
concerned with associating an initial meaning with a context. Anticipation is the process of an agent 
making decisions based on predictions, and expectations about the future.4 The anticipation refers to 
predicting future states of the environment based on the interpretation of the context.  

Sense-data

Interpreted
Perceptual
Categories

Prediction
Future 
States

Interpretation
+

Anticipation

Context

Interpretation

Anticipation

Proto-concept

Action + Validation

Cueing
Anticipation
Generation

Conception

Sensation
Perception

Moving Context to Proto-concept
Scenario I

 
Figure 3. Scenario I, in which the agent moves a context into a proto-concept 
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Figure 4. Moving a context into a proto-concept, Scenario II 

Figure 3 presents a scenario in which a context in terms of sense-data is constructed into a proto-
concept. Through sensation and perception processes, the contextual information is interpreted based 
on the agent’s experience. With this initial transformation, the agent creates a mapping between the 
context from its external world and its internal world. It can therefore cue its memory to generate 
                                                      
4 http://en.wikipedia.org/wiki/Anticipation.  
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anticipations for the interpreted perceptual category. The conception process constructs a proto-
concept based on the interpreted and the anticipated information. The agent then uses action processes 
to affect the environment. Through comparing its anticipation with what actually occurs in the 
environment, the agent is able to evaluate the proto-concept.  

Hypothesising

Cueing
Anticipation
Generation

Sense-data
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Prediction
Future 
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Re-Interpretation
+

Re-Anticipation

Context

Explanation

Re-anticipation

Proto-concept

Action + Validation

Conception

Sensation
Perception

Re-interpretation

Moving Context to Proto-concept
Scenario III

Re-interpreted
Perceptual
Categories

 
Figure 5. Moving a context into a proto-concept, Scenario III 

Similar to Scenario I, in Scenario II the agent already has related experiences that can be used to 
construct a memory of a context. The difference between Scenarios I and II is timing. Scenario II 
describes that an agent reinterpreting a context when an invalid proto-concept is detected and 
discarded, as shown in Figure 4. Re-anticipations represent the agent’s new predictions for the 
environment. It is produced through cueing and activating the memory. The constructed proto-concept 
can be regarded as an adaptive knowledge structure for a context over time. Scenario III, Figure 5, 
depicts how an agent comes up with a new concept when there is no mapping between the context 
detected and its experience.  

Table 2. An example for Scenario III. Target concept is the concept to be learned (⌐C 
means not C) 

Context Time t Time t + Δt 
Sense-data  User inputs a, b 

(symbols that represent 
features a, b) 

User inputs a, b, ⌐c, f (new 
combination of symbolic 
representation of features) 

Agent’s 
Experience 

• a, b, c, ⌐c, d, e, f, h, j, k correspond to A, B, C, ⌐C, D, E, F, 
H, J, K (knowledge representations of symbols) 

• A, B, C, D, Target concept E (Experience of E and related 
representations of symbols)  

• A, B, C, F, Target concept J (Experience of J and related 
representations of symbols) 

• A, B, ⌐C, F, H, J, Target concept K (Experience of K and 
related representations of symbols) 

• K  ⌐C (K cannot have C) 
Interpretation 
Reinterpretation 

A and B A, B, ⌐C, F 

Explanation None  Not an E, Not a J,  May be a K 
Anticipation 
Re-anticipation 

A, B, C, D, Target 
concept E 

A, B, ⌐C, F, H, J, Target concept 
K 

Validity of  
Proto-concept 

False  True 
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A new factor is included in Scenario III to provide explanations to compensate for the lack of mapping 
between the agent’s experience and the context. The agent uses its experience to perform a reverse-
engineering process, in which the context and interrelationships are analysed and represented in a new 
concept or the same concept with a different level of abstraction. A simple example is shown in Table 
2. 
An anticipatory system contains a predictive model of itself and its environment that enables it to 
adapt based on that model [34]. Anticipations are essential for an agent to be able to adapt to its 
environment. Anticipations bring forth the agent’s experience and enable it to go beyond explicitly 
presented contexts. The interpretations and anticipations for a context form an instance of a proto-
concept, which provides a snapshot of the agent’s first-person representation of that context. The 
validity of the constructed proto-concepts can be evaluated through examining their anticipations in 
interactions. A valid proto-concept can correctly predict the environmental changes. 

4.3 Modelling Experience of Situated Agents 
Experience comprises the knowledge of some activity or some event gained through direct 
involvement in that activity or event. This paper represents experience as structures. They can be 
classified into three categories. 
1. A sensory experience holds discrete symbolic labels for discerning sense-data. They are the 

built-in features for sensors. Each sensor captures a particular type of information. Once an 
environment stimulus is detected, the agent attaches an initial meaning to it, based on its sensory 
experience; 

2. A perceptual experience captures historical representations of perceptual categories and their 
interrelationships, including entities, properties and entity–property relationships with degrees 
of beliefs; 

3. A conceptual experience comprises the grounded invariants over the lower level perceptual 
experience. A conceptual experience explicitly states the regularities over the past observations 
of perceptual instances. 

Experiential grounding [27] is implemented via a weight adaptation process (Wa), which adjusts the 
weights of each excitatory connection of the valid concept of a Constructive Interactive Activation and 
Competition (CIAC) neural network [35], which is an extension of an IAC neural network [36], so that 
those nodes that fire together become more strongly connected. 

5 SITUATED AGENT-BASED DESIGN OPTIMIZATION TOOL 
This section describes the general architecture of a situated agent-based design optimization tool. A 
situated agent wraps around an existing design optimization tool. A user accesses a design tool via this 
wrapper, where the situated agent senses the events performed by that user. The situated agent uses its 
experience and concept formation engine to generate a concept, which modifies the tool’s behaviour in 
later designing. The user can also directly communicate with the agent to obtain additional 
information. Such a framework provides the means that allow the agent to incrementally learn first-
person knowledge. The system consists of two major components: a situated agent and a tool platform 
which includes a design optimization tool, a tool wrapper and interface agents, Figure 6. In this 
research, Matlab Optimization Toolbox (version 3.0.1) was chosen as the design optimization 
platform. It is a collection of functions that extend the capability of the MATLAB numeric computing 
environment (Release 14). 
The toolbox includes routines for a variety of optimization classes, including unconstrained and 
constrained nonlinear minimization, quadratic and linear programming, and nonlinear optimization. 
Via the MATLAB command line, Matlab users use a scripting language called M-file to define and to 
solve optimization models. The interface agent, which consists of a Callback agent and an M-scripting 
agent, enables both users and the situated agent to operate on the engines in the Matlab Optimization 
Toolbox. A tool wrapper serves as an interface between the user, the tool and agents. It provides a 
simplified and efficient way to perform design optimization using the Matlab Optimization Toolbox. 
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Figure 6. Situated agent-based design optimization tool (after Fig. 3. [8]) 

6 A COMPARISON EXPERIMENT IN DESIGN OPTIMIZATION  
The purpose of this experiment is to evaluate the implemented prototype system through examining 
whether the proposed approach can learn new concepts from interactions, and evaluating the efficacy 
of the system in various design optimization scenarios. We measure the system’s performance in 
assisting a design optimization tool to recognize novel design optimization problems compared to 
other approaches.  
This test focuses on investigating the performance of various systems, namely a static system, a 
reactive system and a situated system, in learning to recognize design optimization problems in 
heterogeneous design optimization scenarios. A sequence of 15 design scenarios is created and 
adopted. Each scenario represents a design task which is further composed of a number of design 
actions. For example, a typical design optimization task consists of a number of actions: 
• defining objective function; 
• identifying objective function type; 
• defining design variables, variable types; 
• describing design constraints, constraint types; 
• defining gradients of objective function and constraints; 
• defining matrices, such as Hessian matrix and its type, A, b matrices (only available for Matlab 

users). 
• selecting optimizers; 
• submitting design problem or editing design problem; and 
• submitting feedback on agent’s outputs.  
To support the test, a sequence of 15 design scenarios is created. The sequence of tasks is: 
• {L, Q, Q, L, NL, Q, NL, L, L, NL, Q, Q, L, L, L} 
 “Q”, “L” and “NL” represent quadratic, linear and nonlinear design optimization problems 
respectively. The initial experience of the agent holds one instance of a design optimization scenario 
solved by a quadratic programming optimizer.  
A static system can only use the predefined knowledge to predict a design task. A reactive system uses 
a priori knowledge to respond to an environmental cue. It can also learn via constructive learning, 
provided it encounters a new design problem. A situated system not only employs its existing 
experience to react, it also reflects using the hypotheses created based on the accumulated conceptual 
knowledge.  
The performance is defined as the correctness of the system’s response to an environmental cue, which 
predicts an interaction situation, and hence assists the applied design task. We use prediction success 
rate (Ps) to measure the overall performance of a system in this test:  

testtheinspredictionofnumbersTotal
spredictioncorrectofNumberPs =  (7) 
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Figure 7. Prediction success rates for a static system (a); a reactive system (b) and a 
situated system (c) (white squares represent absolute results for predicting optimization 

problems, 1.0 is for correct predictions and 0.0 for otherwise) 

The prediction success rate corresponds to the percentage of correctly predicted examples over total 
test examples. Based on results measured from this test, we can calculate prediction success rates for 
each system. As shown in the performance chart, Figure 7, a situated system produces a prediction 
success rate of 0.8 compared to a rate of 0.67 for a reactive system and 0.33 for a static system. We 
conjecture that the reason for this is the ability of a situated system to generalize across observations 
and subsequently to deduce explanations for environmental changes. It is also noted that the agent uses 
the conceptual knowledge to hypothesize and reflect from Task 10, thus providing better performance 
from that point on. 

7 CONCLUSION  
This paper presents an approach that enables a design tool to learn first-person knowledge through 
interactions. A situated agent-based design optimization tool can learn to recognize new design 
optimization problems and adapt the learned concepts to various circumstances. Experimental results 
show that the proposed approach has a positive impact on improving efficacy of a design tool in 
assisting designers in their tasks. In conclusion, the approach plays a potential role in enhancing 
design effectiveness through introducing mechanisms that allow a design tool to learn first-person 
knowledge whist a designer is utilizing the tool in design. 
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