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ABSTRACT

This article presents a multi-agent method to &thé difficult task of multidisciplinary optimisan,
based on the notions of cooperation and self-réigulalt is focused on the preliminary aircraft idgs
process which demands complex compromises betwesmy ractors. In our approach several
cooperative agents collectively act to achieve ermon goal, i.e. optimising a multi-objective
function, even if the environment of the systene(tiser's requirements) changes during the solving
process. In MASCODE, one agent encapsulates or®litie and is designed individually without
considering the dependencies with the others. 8@dmputation is conceptually distributed without
central control. Experimental results are provided efficient in comparison to the classical FSQP
method.

But designing an aircraft is a complex process, #ns we show that adaptive behaviour of
MASCODE provides new capabilities to understandtarmttanage the preliminary aircraft design.

Keywords: Computations in Design, Artificial Intgénce in Design, Adaptive Multi-Agent Systems,
Cooperative Reasoning.

1. INTRODUCTION

1.1 Preliminary Aircraft Design

Preliminary aircraft design involves a lot of digdaies like weight, range, aerodynamic and opegatin
cost estimations [1]. In addition to the multid@oiary aspect, manufacturers and airlines have
different objectives on the product. Most of thedj manufacturers search to design product families
whereas airlines are looking for aircraft that beatisfy their needs (number of passengers, range,
depreciation...). Thus, many compromise decisionsnaade in the process of specifying the high-
level design that will meet the expected aircraftfgrmances (number of seats, cruise range, takeoff
distance, etc.). These compromises are difficulathieve, because constraints are humerous and
dependent.

Preliminary aircraft design is organised in twaosteFirst, a simulation function is built. It istamed
from the complex assembling of disciplinary mod#isit represent physical phenomenon as a
mathematical function with a set of inputs and atgp Then, when the technical requirements
(product performances) are known, the simulatiorcfion is used to calculate the performances (Max
Take Off Weight, Range, Operating Weight Empty)s tis thedesign direction Unfortunately, a
mathematical inverse problem must be solved itgbti because computational models are only
known in theanalysis direction; computing product performances from design patars. In the
particular case of aircraft design, a lot of partargeare shared between disciplines. So the pagasnet
and performances are highly interdependent, anstined by their mutual tradeoffs [2].

1.2 Multi-Objective Optimisation

As presented, preliminary aircraft is an optimisatiproblem. Mathematical tools using response
surfaces allow dealing with it. Especially theasible Sequential Quadratic Programmi(iSQP), a
gold standard method, enables to define objectiveperformances and on design parameters, and
then to find solutions to the design problem [3pwé¢ver the number of degrees of freedom and the
parameter interdependencies imply that the solusipace is discontinuous. So, these traditional
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mathematical methods are not really adapted to pgheiminary aircraft design, because the
discontinuity makes difficult to find design poirttsat satisfy all the constraints and then to ojsém
them. Genetic algorithms (GA) offer very interegtirobustness to tackle this problem and to find
admissible point, because they are independemhieadiscontinuity. However GAs optimise the design
as a global problem, and provide a limited viewcompromise solution, since it is obvious that the
aircraft is never a mathematical optimum but anireying compromise [4]. Pareto front are
computed to compensate for this lack by pointing thgion of the best compromise rather than
providing only one optimal design. However if theyprove the solution quality by providing more
information, they do not really offer a better urslanding since they are difficult to compute amd t
visualise especially when the targeted solutiaeadly multi-objective.

1.3 Multi-Disciplinary Optimisation

Kroo defines MDO (Multi-Disciplinary Optimisatiorgs "a methodology for the design of complex
engineering systems and subsystems that coherexplpits the synergism of mutually interacting
phenomena" [1]. During the last three decadespouartypes of computational or computer-aided
design systems have been developed in MDO domailot Af issues were addressed like inter-
operability, problem decomposition, design robussrenalysis and uncertainty propagation.

Several strategies were proposed for the globahagstion and the subsystems linkage, exploitirgg th
synergy of interactions throudfixed Point Iteration(FPI) algorithms [5]. Many relations between
mathematic analyser and optimiser were studiedhich an analyser defines an execution order for
computing the different models, whereas an optimisempares their results and adapts the design
parameters to converge on target criteria, likéAlinAt Once (AAO), Multi Disciplinary Feasible
(MDF) and Individual Disciplinary Feasible(IDF). However these strategies are finally first
decomposed in subsystems and then centralisednwatiioptimiser. So the decomposition of the
system becomes a key point and influences the ug®ol More complete approaches such as
Collaborative Optimisation(CO), Concurrent Sub-Space Optimisatig€@SSO) offer multi-level
architectures, where each disciplinary has itsviddal optimisation strategy [1Analytical Target
Cascading(ATC) is another alternative, in which each comgranis itself an optimiser [5]. As a
consequence, the system is hierarchical and eawpar@ent tries to minimise its individual objectives
and those of its neighbours. The MASCOD#pproach presented in this paper has some sidlitu
with it, but its processes are adaptive and dynamic

1.4 Self-Organising Multi-Agent Approach

Distributed Constraint Optimisation Problems (DCQ@R) an important research area for multi-agent
systems. Its objective is to propose an optimadbassent to a set of variables spread over a nuwiber
agents. A number of powerful distributed algorithsngh as SynchBB [6], ADOPT [7], OptAPO [8]
have been developed, and provide solutions eitbiémally, or close to optimality. However as these
approaches are inspired from non-distributed coatbiial optimisation, and not focused on
continuous problems, they are inadequate to soklepnary aircraft design.

Self-organising multi-agent approach works on thpaaition of a functional structure spontaneously
maintained in a dynamic equilibrium by all the papating components [9]. As described in [10],
self-organising MAS (Multi-Agent Systems) offer apfunities to simulate and solve complex
distributed systems, because as in biology theesydiehaviour emerges from agent interactions.
Agents ideally have autonomous behaviours; adapttaatly their state relatively to the others; tear
from experience; and create dynamically group arghrisation. As said above, the preliminary
aircraft design is a complex process, because dfi-thsciplinary aspects and multi-objectives
criteria. Furthermore, the interdependencies betwde parameters impose to make a lot of
compromises that dynamically change the problemmdidation. All these characteristics make self-
organising multi-agent approach a promising sofutmsupport the preliminary aircraft design.

We propose to use a cooperative and self-organminlg-agent approach based on the AMAS theory
(Adaptive Multi-Agent Systems) [11] to solve theefiminary aircraft design. According to the
"organisaction” principles [12], a self-organisiagstem is described as being able to self-regulate,
self-relate and self-product. In this paper, weutoon the description of the self-regulation precéts

! MASCODE : Multi-disciplinary Aircraft Simulationadr COnceptual DEsign

ICED’07/51 2



aims at finding a consensus on the values of iafmddent parameters shared between several
disciplines.

The paper is structured as follows. First, the@ple of using a MAS for enabling preliminary agftr
design through cooperative reasoning are detailleedn, MASCODE results are described and
compared with FSQP results; finally we highlighe tmain long term expectations raised by the
approach compared to latest MDO research works.

2. SYSTEM DESIGN

2.1 Introduction

TakeOffW >| WeightPerformance Weight

Mission

Figure 1: A simplified example of relation between models

MASCODE uses the specific resolution strategy of #®1theory. This is a cooperative strategy,
which is focused on the identification of a setaafal rules. These rules are used to minimize tbe N
Cooperative Situations (NCS) and to improve thenagélity. By now in MASCODE, a cooperative
agent is assigned to a discipline and its aim isotmperate with its neighbours to find a consemsus
the values of parameters in a given system, asrshioviigure 1. Agents are drawn in square and
shared parameters in oval.

For the system, some parameters are inputs (TakéCBpan, Awing), outputs (TakeOffw) and
intermediates (Range, EmptyW...). Any of these ipatars can be a user objective. However
regarding the characteristics of the problem, thly reedom degrees are input parameters. Due to
interdependencies between parameters, decomposfioie global problem by discipline and
subtask, it seems possible to gain advantages asthsgfributed resolution process that will takein
account the shared constraints between entitiés ABDOPT or DPOP algorithms, or in multi-agent
approaches in general.

In MASCODE, one agent controls one discipline. Efigmre, these agents are callBdsciplinary
Agents (DA). The multi-agent system is a network of DAresponding to the model hierarchy
commonly found in preliminary aircraft design. Ed2A owns representation knowledge of the model
and learned knowledge from experiences, which see through a set of behaviours to communicate
and to take decision according to environment [pioe.

2.2 DA's Knowledge
This knowledge is either static or dynamic andwefobld: knowledge on relations (connection with
neighbours) and knowledge on model.

Knowledge on Relations

To interact, each DA knows its provider and useenég} For example, in figure 1, for the agent
Weightthe users ar@VeightPerformancandMission and the providers at®eometry Mission and
WeightPerformanceA user agent uses the computed value of onesobutput parameter, and a
provider sends the value of one of its input patanse In addition to this static knowledge, DA lezar
experiences during the execution, and builds meraofemory is a key element in the AMAS
approach, because an agent adapts its behavioandaag to the positive or negative feedbacks of the
environment and its previous decisions, (see Seetid).
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Knowledge on Model
In MASCODE, discipline are simulated with matheroalti models. Thus, each model possesses
physical properties and hypothesis on each inpotarfels which are specified with validity domains:

. Lower and upper bounds of the design variablesidefiphysical validity interval (physical
limits) for each input, in which the model is corntglie.
. An objective validity interval (objective limits)edcribes a preferred interval. All the values
inside this range fit the user constraints.
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Figure 2: Evaluation functions of critical values (interval validity functions).

With these intervals, we defined a paraméfpiecewise continuous mathematical function, shawn
figure 2, that enables the agent to compute afaetiign criteria. It indicates whether the agent
respects its physical limits and its objective tani

. when the input value is inside the objective v&idnterval the critical value is negative,

. when the input value is inside the physical vajiditerval but outside the objective validity
interval, the critical value is positive and infarto a critical threshold, predefined by the
designer, which is the maximal critical value ie gystem,

. when the input value is outside the physical limtscritical value is equal to the critical
threshold.

Finally, the non-satisfaction degree of the agemlefined as the maximum of its input critical \edu

from its input parameters.

2.3 DA's Behaviour

Each agent is able to receive and send messageasfirst phase, agents compute their models and
transmit, via aforward messagethe value of their outputs to their user agefitsis phase is
completed once an agent has received all its fahwassages from its providers. Consequently to the
reception of forward messages, agents may bacdward messagds inform providers when the
provided value is not relevant. This second phaseompleted once the agent received all its
backward messages from its users. Thus, accorditigetreceived information in backward messages
and to its individual state, the agent sends a fication request to its providers.

2 The parameteglpha is used to indicate whether a constraint is hardat (higheralpha is, harder the
constraint is).
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Cooperative Reasoning

The Cooperative Reasoning is designed across NopeZative Situations (NCS) [11], composed of a

description (conditions, triggers) and a set ofiamst The description can be viewed as a rule

containing every necessary conditions to recogtheeNCS. The sets of actions describe how the
agents can improve the cooperation of their neighbmods. When all NCS are identified, the main
objectives and the high-level decision model ofrage@re known. In our cooperative approach and
due to a set of NCS, we define the aim of each tagénich consists in performing the action that

decreases the most critical situation in the sysBymeasuring locally a non-satisfaction degree (t

maximum of all the critical input values) in fureni of its objectives and of its physical limitscha

agent can compare its critical value with the caitivalues of its neighbours (received requestsenT

it takes local cooperative decisions accordindnéofollowing main principles:

. When the agent is the most critical, it builds aification request for itself.

. When the agent is less critical than a modificatieguest, it acts for the modification request.
For that it computes the Jacobian matrix of its efband finds the local dependencies between
the concerned output and its inputs. Thus withntlbdification request and with its local
dependencies, the agent is able to send a newinaittih request to its neighbours, that could
help the received one.

Learned Experiences and Adaptive Input Variation Steps

The reasoning can be cooperative only if the deigiodel takes into account the past experiences of
the agent. Without any reasoning on the past esipees the system is open to oscillations and ahaoti
phenomena. However in MASCODE, the memory is gsitgple. While moving to a solution, if the
modification direction of an input is successivehe same, the agent considers it as a positive
feedback and increases an input variation stepvésaly, if the modification direction is changing,
agent considers it as a negative feedback, anéases the variation step. The initial variatiorp sse

a percentage of the total interval of the objeclinéts given in the figure 2. This behaviour allgw
dynamic equilibrium when the system convergesdtobal solution as shown in section 3.

begin
(1) while not all requests for all outputs received do
(a) while not all requests for output j received do

i.  reception of backward message on output j for user k& ;
ii. update knowledge on output neighbour & ;
done

(b) select the most critical request for output j ;

(c) for each input dependencies do
i. build the corresponding modification for input 7
done

done

(2) for each input do
(a) select the most critical input objective ;
(b) if input ¢ no predecessor then

i. adapt the input value according to the most critical input objective

(c) else
i.  send a new backward message according to the most critical input objective
fi

done

end

Figure 3: Backward message procedure for DA.

% The Jacobian is equivalent to a derivative of dimariate function
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Algorithm

To sum up the DA's behaviours, thmckward message phase presented in figure 3. The
modifications are propagated across the systema@sht uses its cooperative reasoning to select the
modification requests it wants to create or trahgmieach input. For each output, an agent possesse
several users, because one parameter is oftendshet@een several disciplines. So first, it recgive
the modification for each output parameter (step Then, it selects for each output the most @itic
request and uses its knowledge on intput/outputiggncies to build the corresponding request on its
inputs (step 1b). Then, it selects the modificattontransmit to its provider. When all critical
situations have disappeared, all agents are itisdied state and the system has converged.

3. EXPERIMENTS AND RESULTS

MASCODE implementation is based on JADE framewatB][ To validate the approach, some
experiments were done on a sample preliminary airatesign case study with 10 models and 60
parameters (20 inputs, 17 outputs, 23 intermediaitesvhich 14 parameters are objectives (7 inputs
design freedom degrees, 7 outputs performances).

3.1 Comparison with FSQP
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Figure 4: Comparison of input objectives obtained with FSQP and Mascode.
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Figure 5: Comparison of output objectives obtained with FSQP and Mascode.

MASCODE solutions have been compared with FSQP onsitaints satisfaction mode. For
MASCODE and FSQP, the same intervals are provigethe objective parameters. Then the system
adapts its parameters until constraints are sadisxperimental solutions are plotted on the igut
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and 5. The input objectives of the problem aresitlated with figure 4 and output objectives with 5.
Results show that the found solutions are simitar.the same problem, two different solutions chlle
"MASCODE 1" and "MASCODE 2", are presented on tiedgrams. Solutions can be different at
each resolution, but are equivalent because theyeot the problem constraints. By contrast, FSQP
provides always the same solution, because its migdtion process is deterministic.

3.2 A MASCODE Execution
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Figure 6: Evolution of objective parameters during a Mascode execution
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Figure 7: Evolution of critical values in the system during a Mascode execution
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Figure 6 shows the evolution of the objectives pei@ré during the solving process. X-axis
represents the time and Y-axis the normalised peterwalues. Thus, all parameters can be plotted on
a same graph. Figure 7 shows the evolution forcthieal value of the system. X-axis represents the
time and Y-axis the parameter critical values. $y&em finds a solution, when the critical values a
all null. As shown in figure 7, the system findsufesolutions during the computation. Each time a
solution is reached (see solution 1,2,3,4 on figQrehe user introduces some new constraintsen th
system, figure 8. These new constraints break ¢odilerium by introducing new critical situations
(new disorders). Then a new self-adaptive processutomatically engaged, because the problem
formulation has changed. An entire scenario isarpl in the next section. Figure 7 shows that the
critical values globally decrease. However thid i®lsometimes discontinuous, because parameters
are more or less sensible to the modificationsartsagent can decide a modification without knowing
it would not be really a cooperative choice. Howesa&ch agent learns progressively this kind of non-
cooperative situations and the system converges.

3.3 Adaptive Behaviour of MASCODE
MASCODE provides user interfaces that help to ustded/manage the system. For example, it
provides a view of the system with the repartitidrthe critical values, individual interfaces faoh
DA and various graphics to pay attention on theupater evolutions. In this article, we are focusing
on MASCODE capabilities to provide a dynamic andmive system. Figures 8 and 9 detail some
parameters during a resolution, described in 3h2s€ figures illustrate the dependencies betwen th
parametersRA (RAnge of the mission)MTOW (Max Take Off Weight) andMWE (Manufacturing
Weight Empty). Some of the relations of these patans are illustrated on the figure 1. To provide a
example and to simplify, they could be expresseflisns:
. The range RA impacts the fuel weight and so MTOW.
. MTOW impacts the manufacturing weight empty. Wheh@#V increases, the aircraft

structural constraints change.

. If the aircraft structure changes, geometry coulu\e.
. If the geometry of the aircraft evolves, aerodyrmafarces and the range could also be
modified.
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Figure 8: Values of parameters RA, MTOW and MWE

* These values are normalised for visual representat
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Figure 9: Critical values of parameters RA, MTOW and MWE

During the presented process, constraints weregeliblny the user as follow (see figures 8 and 9):

1. Attime t=84s, the objective on RA (range) was @ased of 1%. It immediately introduces a new
critical value for RA. But this maodification doestrimpact MTOW and MWE.

2. At t=100s, user asks for a diminution of the MTOWitst the critical value of MTOW increases
and then the new constraint is shared between RPFOW and MWE. Then system is unable to
converge, because it is over-constrained.

3. Att=146s, a modification of the MWE objective pides new freedom degrees. This modification
IS not important (see figure 8) but enough to dexeeMTOW without changing the mission RA.

4. At t=150s, the MTOW constraint is reinforced (a &uag of 2%).

5. At t=190s, the mission performance RA is degradeti enables the system to converge, because
of links between RA and fuel, and between fuel BITOW.

About the results and this scenario, it is quitacithat MASCODE helps the designer to understand

and to manage the constraints in the system. HEaehthe problem formulation changes, the agents

adapt their behaviour and search a new equilibrinen a new stable state is not reachallgents
self-regulate the critical values in the system help the user to identify conflicting parts. Thartk

this information, he can alter the strongest camsis and let the system converge toward another

relevant solution.

4. DISCUSSION

4.1 Comparison to MDO research works

In addition to the comparison to the FSQP methadtfe case study in the previous section,
MASCODE can be compared with other MDO approachbis comparison is done at a relative high-
level, since existing methods are not agent-based.

® The system is over-constrained
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Solution quality

The quality of MASCODE solutions is equivalent te tsolution found by FSQP, that is based on a
gradient descent and recognised as finding goodtisns in non linear optimisation problems.
However we used FSQP only in its constrained sglwmode. For a full comparison, we need to go
further in a multi-objective approach, where sorammeter values are minimizing or maximizing.

Convergence speed

The time of convergence is the same as FSQP, Imat systematic measure of convergence speed has
been realised for large problems, because it iouaofirst intention. Nevertheless as describefb]n

the convergence speed depends on the problem destiiop. Our problem decomposition is close to
AAO, which is considered as the faster in comparisiith IDF and MDF.

Robustness and disciplinary knowledge integration

In MASCODE, validity intervals about physical mosleare local knowledge. Introducing this

knowledge in the resolution process is a first geint for improving the result consistency. Thus, i

will be possible to add other knowledge in the oe@zg, and to include it in the agent decision nhode

As other methods imply a mathematical formulatibthe constraints, adding new knowledge implies
new constraint formulations, which is not evidenthe general case since it requires multi-expertis

4.2 Advantages of MASCODE

Parameter adjustment

In MASCODE, users can adjust values and associabdity domains of parameters in real time,
because agents will dynamically change their behasiaccording to this new knowledge. By now,
this is the most relevant property of MASCODE, hesmit permits to find and maintain an alchemic
compromise obtained between disciplines througlotietipns and to manage/adapt it dynamically to
any constraints modification. As described in 3MASCODE delivers this behaviour, because it is
dynamic, self-adaptive and robust to changes.

Disciplinary openness

MASCODE requires no global information neither glbldecision process. Consequently, adding or
deleting physical models consists only in updatimgMAS. In all other non-agent MDO approaches,
the openness capability is never invoked. But thisemental functionality can be very useful for
managing/understanding the complexity of the systeaand for dynamically changing the
requirements. In example during an aircraft progragw technologies (engine, materials) can offer
new improvements on the performances. To analysewith MASCODE, the designer
adds/exchanges/adapts the simulation models, amd stfstem automatically reaches a new
equilibrium, showing the impacts on performances.

4.3 Perspectives

Using self-regulating behaviour, MASCODE adressest mf the multi-disciplinary and multi-

objective aspects of the design. But a completeosghnised system also requires self-relating and

self-producting behaviours [12]. The self-relataglity enables the system to build organisatiod an
the self-producting to evaluate and re-organis8uth abilities are very useful in preliminary eaft
design for two reasons :

1. The complexity of the problem goes beyond optingighre objective parameters. Choosing the
models of the simulation is also a complex probleetause the simulation function is different
for each study and the assembly difficult to bulltius it will be relevant to assist the designer in
this task.

2. When agents negotiate objective parameters, th@aiion context evolves during the resolution.
These evolutions can be of different orders, batiogly a re-organisation of the system, for
example :

a. As the fitness of the models implied in the simolaidepends of the parameter values, the
model organisation can have to be dynamically ceahgnother organisation is becoming
more relevant.

b. Once a first consensus is found on the paramelgesiahe agents could have to change the
granularity of the disciplinary models specifyifigetdesign, by refining the parameter
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objectives.
Dealing with these new points implies to add o#tre@wledge on the disciplinary models (granularity,
precision, computation time, semantic...) and tamster new cooperative situations for self-
organising the system.

5. CONCLUSION
This article has presented a multi-agent methaddkle multidisciplinary optimisation, based on the
notions of cooperation and self-adaptation. In MARIE, the physical models are encapsulated in
cooperative agents which negotiate and cooperafandoa solution. This approach is efficient and
provides relevant results, in comparison to thessital FSQP method. From learned lessons, DA
approach can be considered without doubt as reléeamany reasons:
e Each disciplinary model can be design individualithout considering the dependencies with its
neighbours. This ability reduces greatly the coxipjeof the MDO framework.
« An agent can encapsulate the disciplinary modelalso all the associated knowledge such as
critical values, execution time, precision and giarity. So the quality of the solution is
potentially better.
* The MASCODE computation is conceptually distributgthout central control. Thus, the
running can be entirely concurrent leading to atmeduction.
Finally thanks to the robustness and the self-agapehaviour of MASCODE, the aircraft designer is
able to change the problem formulation during #olution process. Through these interactions, the
designer faces up the complexity of the designubgerstanding the parameter interdependencies.
This ability enables #iving design[14] of the aircraft, and offers very promisingrggective for
adaptive MAS to predict and manage the emergendavielr of large numbers of interacting
disciplinary entities. By now, the main focus ofrawsearch is to demonstrate that others self-
organising behaviours improve theing designaspects, and promise a new paradigm for designing
complex.products.
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