
ICED’07/177 1

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED’07

28 - 31 AUGUST 2007, CITE DES SCIENCES ET DE L'INDUSTRIE, PARIS, FRANCE

COMMUNICATING KNOWLEDGE:

MAKING EMBEDDED CONFIGURATION WORK

Gudmundur Oddsson1 and Lars Hvam1
1Department of Manufacturing Engineering and Management, Technical University of Denmark

ABSTRACT
A lot of systems are assembled from near-independent mechatronic subsystems that have to be
configured to match each other. An example of such systems are e.g. home entertainment systems,
where TV, DVD and Receiver are matched to form an overall system, and compilation of pumps and
controllers to form fresh water supply systems. Sometimes an external knowledge system keeps track
of how each subsystem has to be configured, but the actual configuration is often done manually.
Installing and maintaining those kinds of systems can be a tedious task and often requires repetitive
labour. The idea is to “split-up” the product knowledge and encapsulate it into each subsystem. Then,
when the subsystems are assembled, the configuration of each subsystem can either be done
automatically or with minimum input. The concept could be called: embedded configuration.

This article will try to connect three aspects of making distributed knowledge system, the
encapsulation of product knowledge, its subsequent encoding into product models, and finally, the
communication of knowledge between the subsystems. There are two main reasons for focusing on
communication, namely the encapsulation of knowledge and the communication between machines.
One has to identify the information needed from outside for each subsystem to work. That
information should also aid in finding the “services” that the subsystem can offer the overall system.
Communication between subsystems has to be made explicit. A protocol has to be in place to tell the
subsystem how to share its inner workings and how to be able to participate in the overall system.

Keywords: Product Models, Knowledge Engineering, Configuration

1 INTRODUCTION

 “Systems everywhere” as so eloquently stated by Bertalanffy [1] is an excellent way to describe our
modern society. It surrounds us with systems to help us in and to make better our daily lives. Many
of those systems are “hidden” from us, and we only notice them when they fail. Think about the
facilities that one uses daily, like electricity, water, sewers and heating. Those are complex product
systems that are made by combining several subsystems (or independent products) to form a whole.
Many of the subsystems are equipped with computers. By setting parameters those subsystems can be
allowed a wide range of different setups, just like they were different products. To make the subsystem
work in a context, these parameters need to be set. An example of an installation complexity could be
the water supply in a given building of reasonable size which would require about four to six pumps,
each with 500 parameters being controlled by a controller (in the sense of a controlling unit, not a
person) that has 3000 parameters to be set. One can easily see the tediousness of installing such a
system.

In order to make complex product system setups easier an idea is brewing. If one were to encapsulate
as much product knowledge in each subsystem as needed, have internal configuration engines keep
track of internal consistency and focus communication between subsystems so that only core
information or knowledge is transferred, setups would be simplified. The idea is to make the systems
kind of aware and give them knowledge to “self-configure”, once the hardware connections are made.
This idea has a lot in common with the field of artificial intelligence, specially the branch of
distributed artificial intelligence and has inspiration been drawn from that field on how to go about
solving it. This article will try to connect three aspects of making distributed knowledge systems,

ICED’07/177 2

namely the encapsulation of product knowledge, its subsequent encoding into product models, and
finally, the communication of knowledge between subsystems. To achieve this, one has to look at the
building blocks needed for such construction namely: knowledge, communication, how to
communicate knowledge and finally, how to model in such a way that it will support the final
implementation. The solution suggested for making distributed knowledge systems work, is called
embedded configuration, and there will be a discussion on this principle later in the article. This
article will end with a rationale for why the communication issue should be the focus of such an
approach. Let us now go through the building blocks one by one, connect them into a whole and then
tie them to the concept of embedded configuration.

2 KNOWLEDGE AND ITS PART IN COMPLEX SYSTEMS SETUP

Before moving into embedded configuration and communication, let us talk a little about knowledge.
How is it viewed and defined, or what is maybe more relevant, how it fits together with the task of
creating complex systems? Every undertaking humans do is built on our knowledge of things and
surroundings. We are often not very aware of our knowledge and how it is structured, we just use it.
If one is to construct an intelligent system, one has to know what knowledge is, and especially how to
transfer or communicate it to the machines. Let us start with knowledge and its relationship with data
and information.

Attempting a knowledge definition

Knowledge has been a research topic for some time now. What is interesting is that authors have
different aspects to their understanding of knowledge and its dependency on data and information.
Note that these views are not contradictory, they just represent different viewpoints and seem
dependant on the domain from which the author focus his / her research. A quick, and by no means a
complete, look at the dependency between data, information and knowledge is shown in Table 1.

Table 1 – Different authors on data, information and knowledge

Author Data Information Knowledge
Moore Digital object

Objects are streams
of bits

Any tagged data, which is
treated as an attribute

Attributes may be tagged data
within the digital object, or

tagged data that is associated
with the digital object

Relationships between attributes
Relationships can be procedural /

temporal, structural/spatial,
logical/semantic, functional

Wiig Facts organised to describe a
situation or condition

Truths and beliefs, perspectives
and concepts, judgements and

expectations, methodologies and
know-how

Nonaka and
Takeuchi

 A flow of meaningful
messages

Commitments and beliefs created
from these messages

Spek and
Spijkervet

Not yet interpreted
symbols

Data with meaning The ability to assign meaning

Davenport Simple observations Data with relevance and
purpose

Valuable information from the
human mind

Davenport
and Prusak

A set of discrete
facts

A message meant to change
the receiver’s perception

Experiences, values, insights, and
contextual information

Quigley and
Debons

Text that does not
answer questions to
a particular problem

Text that answers the
questions who, when, what, or

where

Text that answers the questions
why and how

Choo et al. Facts and messages Data vested with meaning Justified, true beliefs

Jensen
Group

Representation of
facts

Data plus Meaning
Understanding of patterns,

relationships

Information plus Beliefs,
Commitments, Assumptions,

Design for application

Constructed from Stenmark [2], R. Moore lectures at Rice University, Houston, Texas and Jensen
Group [3] (who compiled from Fahey, Nonaka, Wurman and Gange)

Some interesting aspects are notable in Table 1. Although most agree on data as facts or symbols and
information as data with meaning, the authors reach different abstraction levels in their knowledge
definitions. The IT view offered by Moore has knowledge with “lower” abstraction than e.g. Choo’s
“justified true beliefs”. The views that would make most sense in this article are the ones presented by

ICED’07/177 3

the authors Quigley and Debons fused with Nonaka and Takeuchi. The views stated in Table 1 are
quite well summarized in Mueller & Schappert [4] as a set of abstraction levels and general
description to each level. It points to linkage as the most important aspect, not the definition of each
level.

Table 2 - General view on data, information and knowledge [4]

In the classical interpretation That is:
Data is associated with syntax Data per se has no meaning and may be seen as raw material for

information

Information corresponds to semantic Information is context sensitive and meaningful in the sense that it is
interpreted data

Knowledge takes the pragmatic part Since context is user (application) dependant, information then may be
enhanced by its use, i.e. the pragmatic knowledge

This is to say that how one moves between the levels is more relevant than giving a precise definition
of those same levels. A definition of
each level is shown in Table 2. Taking
this view on the linking and picturing
would result in Figure 1.

So, where is this leading? No matter what
views on data, information and
knowledge is taken of those presented in
Table 1, by focusing on how to move
between levels and identifying what is essential, it should be possible to use that to make more
intelligent systems. The syntactic and semantic is linked with
context mapping while the semantic and pragmatic has action
interpretation link. That can be even more useful if we call it
context and interpretation as pictured in Figure 2.

The process of moving from data to knowledge[5], as indicated in
Figure 2, should hold true for all viewpoints stated in Table 1. But,
for the purpose of structuring data, information and knowledge in
regard to embedded configuration, we will focus on context and
interpretation and use the definition in Table 2 as our guide. This
actually coincides with the point of view offered by Schreiber et al
[6],who state that maybe a precise definition of knowledge is not
needed to be able to manage knowledge and its communication.

This focus should also imply how communication can be handled.
Let us move on to communication and its role in knowledge
sharing.

3 COMMUNICATION

Communicating knowledge can draw inspiration from many different fields. Human beings do it all
the time, and much research on this topic has been carried out. Computer science has tried to emulate
humans in artificial intelligence, especially distributed AI and the design of complex control systems
has focused on communication for quite
some time. When we communicate in our
daily lives, we usually do not differentiate
between data and information on the
producer side or information and
knowledge on the consumer side. Matthias
Rauterberg [7] shows this well in his
producer to consumer view of
communications as seen in Figure 3. So,
what gets communicated is information or

Knowledge

Data Information

(pragmatic)

(semantic)(syntactic)

Knowledge

Information

Data

Action interpreted

Context interpreted

The semiotic triangle Knowledge evolution

Figure 1 - Relating data, information and knowledge [4]

Data

Information Data

Knowledge Information

Aware of

context?

Can

interpret?

Yes

Yes

No

No

Awareness stage

Interpretation stage

Figure 2 - Moving between
data, information and

knowledge [5]

Creation

Discovery
Gathering

Storage

Presentation
Organization

Communication
Interpretation

Evaluation

Integration

Storage

producer consumer

data information knowledge

Figure 3 – Producer / consumer communication [7]

ICED’07/177 4

context-rich data, and it is then subsequently the consumer who interprets the communiqué to
knowledge.

This producer / consumer terminology could be more easily understood by using communication
theory [8], which states producer as sender and consumer as receivers (Figure 5). This is one of two
other ways to look at communication, the other being communication layers (Figure 4). Even though
these look different they are of similar rationale.

The lowest layer in Figure 4, the physical carrier, is the same as the medium part of Figure 5. The
protocol will decide how coding and decoding is done and subsequently how the signal will be like.

Flow of control

Meaning

Protocol

Physical carrier

Figure 4 - The
communication layers [9]

Figure 5 - Communication theory [10] but based on Shannon & Weaver [8]

The two higher layers, Meaning and Flow of control, are not explicitly drawn in Figure 5, but the first
mentioned, Meaning, would implicitly be what the sender wanted to say to the receiver. Flow of
control is not present in the communication theory, but one could think of ways to add this to the
picture.

In anthropology yet another way to look at communication exists, the high and low context
communication put forth by Hofstede [11]. This focuses on the awareness stage (in Figure 2) and on
how much knowledge / context one has to add to the actual “signal” to get the “right” meaning from
the communication. Think about the following: ask anyone in most western cultures for directions to
a place that does not exist, and everybody (well, most likely everybody, apart from some jokers) will
tell you that the place is nowhere to be found. Do the same in some middle-east countries where it is
considered rude not to help, and some people might try to guide you to somewhere.

To visualize this difference, one
could draw a “context” axis and
place the three levels there.
Figure 6 and Figure 7 show high
and low context communication
by placing the three levels on an
imaginary “context” axis where
longer distances depict more
context knowledge. In those
figures the x-axis has no special
meaning.

The context of communication has another impact; it places a role on the sense-making process.
Sense-making in communication has been researched in, among others, the sense-making theory [12].
Its core is “asking the right questions” when communicating. Think about the following: you go to
the library and ask for Shannons & Weavers article on communication. The librarian gives you what
you ask for, but you later realize that it was not exactly what you where looking for. If, in the
beginning, you could explain to the librarian why you were there, like: I am working on how to
communicate knowledge and need literature related to communication, the librarian would have had a
chance to “interpret” or put into “context” what you wanted and find something relevant. In relation
to what has been said earlier, the first is communicating data and the latter is communicating
information. When communicating information the receiver gets the possibility to “interpret” or
“contextualize” it to multiple sets of data. This could be drawn onto the data, information and

C
o
n
te

x
t

Knowledge

Information

Data

H
ig

h

Figure 6 - High context
communication

C
o
n
te

x
t

Knowledge

Information

Data

L
o
w

Figure 7 - Low context
communication

ICED’07/177 5

knowledge mapping figures with an arrow running down from knowledge to data. The lower the
context barrier (like the bar in Figure 6 and Figure 7), the “easier” the mapping between data and
information / knowledge ought to be. Like this paragraph on communication hints, one would most
likely not have knowledge in the communiqué, only information, and it would then be up to the
receiver to make the interpretation.

4 COMMUNICATING KNOWLEDGE

We constantly try to communicate knowledge in our surroundings. This might be best illustrated with
an example. The other day I helped my mother move photographs from a digital camera to a PC. This
should be a straightforward task. The problem (well, one of them) was that we live in different
countries, so I guided her through the telephone. This took a lot longer than expected and required
many iterations and explanations. After we had finished the task, I came to think of how this actually
related to my work and the communicating knowledge “dilemma”. It made me ponder on the
following: Let us assume that you are a computer literate person with some IT knowledge and you
were to communicate your knowledge to an elder semi-computer literate person who is to perform a
simple (from your point of view) task. Would you prefer to do this through the telephone in your own
language, meaning that you could only use words and no observations nor manual guidance, or on site
in an unknown language and having to rely on mime, observation and manual guidance?

An interpretation of this scenario could be that in the first case, one would try to decode one’s
knowledge into information and then ask the other person to do carry out a task / an action that he /
she does not understand as he / she does not have the knowledge to do neither the interpretation nor
the putting into context. It would be a lot like playing blind-chess and having a semi-independent
“machine” to move your pieces, because people do not always do precisely what one says or your
prescriptions are not precise enough. One would then constantly have to check if the person had done
what you asked him / her to do. In the other case, one would not have to decode one’s knowledge or
to explain both interpretations and context. A simple “follow my lead” would suffice, even though
one could not speak a word in the other person’s language.

This talk on knowledge and communication is all good and well. Let us now put it into context with
the problem at hand, namely the use of embedded configuration to increase usability.

5 EMBEDDED CONFIGURATION AS AN AID TO REDUCE COMPLEXITY

A lot of systems are assembled from near-independent mechatronic subsystems that have to be
configured to match each other. An external knowledge system sometimes keeps track of how each
subsystem has to be configured, but the actual configuration is often done manually. Installing and
maintaining those kinds of systems can be a tedious task and often requires repetitive labour. The
general idea is to “split-up” the product knowledge and then encapsulate it into each subsystem. Then,
when the subsystems are assembled, the configuration of each subsystem can either be done
automatically or with minimum input. The concept could be called: embedded configuration. To better
explain embedded configuration let us use system theory and very simple graphics to go through the
underlying rationale.

Explaining Embedded configuration
The concept of embedded configuration and its benefits can be explained by the system theory, where
elements, relations and boundaries are presented in a graphical way like for example in Skyttner [13],
but built on von Bertalanffy’s ideas [1]. Let us think of a system (Figure 8), it has elements that have
internal relations. Some of the elements require input from the environment (e.g. users) and therefore
transcend the system boundary. Here one assumes
that the elements are some kind of parameters that
have to be set. Some are set with internal relations
while other require input from outside the system.
Note that the abstract figures of the system that
follow do not state anything about what the system
does; only that it needs inputs to be set to a working
state.

System boundary

User input

Element

Relation

Figure 8 - A simple system with elements and
relations

ICED’07/177 6

For explanatory purposes, let us assume that the system is a multipurpose system and the user inputs
needed are parameters to select some of the intended behaviours. If many of such systems are
combined to a larger system (Figure 9), an “installation” problem arises, where subsystems have to be
“matched” or configured to the overall system-intended application. The following rationale only
deals with the problem of installing such systems, but not the subsequent use or purpose (could also be
called system assembly). It is about making a system that works, but not about what it is to do. Back
to Figure 9 and how the various user
inputs are related: Someone, like the
user or an external information
system, has to set all the user input
parameters to make the system work.
But the inputs are not independent;
some of them can be related in one of
two ways, they are to match the
hardware together, i.e. one subsystem
is connected to another and the
parameters make each subsystem
“aware” of each other. The other way
is related to the use of the final
system, the application. That is, when
the overall application is decided, some of the inputs will connect together. Both of these relations can
easily be expressed with rules, constraints or mappings in an integrated system. Things get trickier
when the final system is constructed of unknown subsystems, i.e. when it is not predefined what
subsystems are present in the final
system. The enclosing of the solution
space or the matching of hardware is
the first thing that relates some user
inputs to others. Graphically, this can
be shown by connecting interrelated
inputs, so when one input is set, some
others will automatically also be set,
as shown in Figure 10. The
interrelating of these inputs is a
parallel to constraining the solution
space. As these are completely
hardware-related we will name them
Hardware-induced configuration.

The nature of these relations and that all needed information for connecting the subsystems lies within
the overall system, makes one argue that this linking should be accomplished completely automatic-
ally. The other kind of interrelation between inputs is the application related inputs. These can be set
when the overall usage of the system
is determined. Once the application
is selected, some inputs will relate to
each other and by answering or
setting one input, several others may
be determined. Graphically, this can
be shown just like the hardware
setup, and this is done in Figure 11.

Application relations rely on user
inputs to be set so they are most
likely not automated, but the
relationships should be identified
before the parameters are set. This
relates to the selection of a specific

Subsystem

boundary

Subsystem
boundary

Subsystem
boundary

System boundary

Figure 9 - Subsystems combined to form a system

Subsystem
boundary

Subsystem
boundary

Subsystem
boundary

System boundary

User input

Element

Relation

Hardware related inputs

Figure 10 - Some relation are hardware setup related

Subsystem

boundary

Subsystem

boundary

Subsystem
boundary

System boundary

User input

Element

Relation

Hardware related inputs

Application related inputs

Figure 11 - Some relations are application related

ICED’07/177 7

solution and could be named Application-induced configuration. What is maybe not stated explicitly
here is that inside each subsystem part of configuration can take place and that it is completely
“contained”, i.e. each subsystem will make sure that its internal workings are in order and no illegal
settings are present.

An example will illustrate this. Think about your home and the television and DVD player that most
of us have. When installing the DVD player, one has to go through a menu to tell the player what kind
of TV is present, i.e. normal or widescreen. This is in essence, hardware-induced configuration. Once
a DVD disk is placed in the player, one has to select an “application”, what one wants to do, for
example, select subtitles or a language. This is the selection of a specific solution or application-
induced configuration. This example could of course be made much more complex, but it should
highlight the two important aspects of embedded configuration, that is the hardware- and application-
induced configurations.

Combining subsystems to form a system, where the subsystems have to be configured to work in the
overall system, is a tedious task. As seen in Figure 9 to Figure 11, it is possible to reduce the user
inputs by relating inputs to each other. This encapsulation of both hardware awareness and application
hopefully require fewer inputs by the user. By connecting complexity to the number of activities one
could argue that complexity is reduced in such a concept and hence the usability for the user is
increased. This, of course, remains to be seen (and proved), but the working hypothesis is that this
holds true.

It is easy to put forth such concepts, but to show how to make them viable and construct them is
another matter. When constructing such a system, several issues have to be clear. One would want the
setup to be tolerant towards new subsystem versions and be able to demonstrate redundancy by
reconfiguring if some subsystems fail or partially stop functioning. This requires that the product
knowledge of each subsystem has to be stored internally in each subsystem and they then have to be
able to communicate meaningfully to cope with the overall system. The reasoning in this chapter also
points towards why communication between modules should be the focal point of the concept. To be
able to inter-relate hardware and application settings between subsystems, one has to know what each
subsystem requires in order to function, and how one could ensure that such knowledge sharing deals
with the issues mentioned earlier.

Industry example of where Embedded configuration is needed
Appling the aforementioned rationale to the example mentioned in the introduction of the article
should aid to clarify the suggested method. When connecting a pump to a controller, some parameters
have to be set to “tell” each device what it is to be connected to. The pump has to know that it is being
controlled externally, and it has to “relinquish” its own control. The controller has to know the
attributes of the pump, so that it can control the overall system accordingly. These things are all
hardware-related in the sense that they help define the solution space, i.e. what applications are
possible for the whole system. If the subsystems could communicate meaningfully, these tasks would
“disappear” from the installation. When selecting a specified application, some of the devices have to
be told what is being done. As a part of the application, redundancy has to be set. What is the pump to
do if the connection to the controller is lost and vice versa, how shall the controller handle lost
connection to the pumps? This research is based on a case study at a major pump producing company,
and while empirical work is still underway, preliminary results suggest that roughly one third of all the
parameters (in all devices) have to do with hardware-induced configuration, half with application-
induced configuration or selection of a solution and subsequent operations, and finally the rest should
probably not be parameters at all as they are never changed.

The concept of embedded configuration has now been introduced, and we have identified that both
knowledge and communication have to be modelled to make this work. Let us next look at ways to
achieve this.

ICED’07/177 8

6 MODELLING KNOWLEDGE TO SUPPORT COMMUNICATION

Modelling is done to support all kinds of activities. Since models are abstraction of the world their use
is helpful in decomposing problems and structuring knowledge. Designers of physical artefacts have
for some time used models to aid in the design process. Artefacts are made by humans to serve some
purpose. Herbert Simon put forth the boundaries for science of the artificial in his like-named book
[15], where he states on page 5 that: “Artificial things can be
characterized in terms of functions, goals and adaptation”. These
artefacts are often discussed when they are being designed, and the
designer has to know the intended purpose and then synthesize a
solution. Many have tried to aid the designer by making the process
more explicit and develop tools to that end. When designing complex
systems, like an industrial plant [14], another axis besides the one
identified by Simon becomes apparent, the whole-part look on the
system, where for each level one has to look at the means-ends axis.
This is shown in Figure 12.

The purpose or goal of each level is realized with structure or components that behave in a functional
way towards a goal. This requires functional thinking or reasoning in design and many researchers
agree on that. Like functional and physical dimensions [16], the mapping between functions, design
and processes [17], functional models [18], technical system theory [19], capturing functional
knowledge [20], the Function-Behaviour-State modelling [21] and last but by no account least, the
functional structuring of Pahl and Beitz [22]. All these researchers have their way of trying to capture
the purpose of the artefact being designed and their view should be helpful when we encode the
purpose into the product model. Once the purpose is known, mapping between the means-ends levels
is required. There are many ways to do this. The product family master plan or PFMP (sometimes
called product variant master or PVM) technique has been developed to illustrate variance in product
families. It has evolved from the Andreasen’s Chromosome model [23], and the PFMP latest variation
[24] has three views, the customer view, engineering view and the part view. The first relates to the
goal from Figure 12, the second to functions and the third to components. The PVM is also used in
the procedure for making configuration systems [25]. Another method is the GTST (Goal-Tree-
Success-Tree) method suggested by Modarres [26], where the authors map structure and functions
together. Within the field of product configuration Mittal & Freyman [27] have suggested that
knowledge structuring should be done on physical structure, functions and the mapping there between.
Forza & Salvador [28] add the layer of performance on top of functions and components, which could
also be called goals or applications. In short, most agree that different abstraction levels are needed to
fully describe a product and its purpose. This is like “encoding” the knowledge and rationale that the
designers went through when designing the product [29] into the product model.

To map these connections visually may become quite a tedious task with many relations. Therefore,
others researchers have suggested to use Design Structure Matrixes (DSM) [30] to help the designer to
design with function-structure mappings [31]. Another problem constantly arises both in design and
modelling; how does one accomplish functional decomposition? Some good guidelines on product
decomposition can be found from different authors, the four relationship types [32], the DSM view
[33] but even more important is the attempt to include the purpose of products in decomposition
strategy [34], where the authors map requirements to functions. A sharp definition of the functional
language is required (e.g. Lind’s Multilevel flow models [9], Stone’s Functional basis [35] or
Kitamura & Mizoguchi’s Functional ontology [36]) to structure the decomposition and allow reuse.
Sørensen [37] nicely ties the purpose of artefact to the knowledge and communication needed in his
control system design suggestion seen in Figure 13.

This could be connected to both knowledge definitions (Table 1) and to communication (think about
the librarian and the search for articles). The main impact will be on communication. It is smitten by
how, what and why of the design phase. This will influence how data, information or knowledge is
structured, and it will then connect to the context and interpretation needed to make sense of a
communiqué.

Figure 12 – Designing
industrial plants [14]

ICED’07/177 9

 Models used in designing are not usually accessible in later phases of the artefacts life cycles. This is
probably not a problem as the artefact is
completely known and all its “functionality” and
“goals” lie implicitly in its structure (as structure
is the only “physical” thing and hence the only
thing the designer can influence). The problem
arises when the system is composed of several
subsystems, which have to work together, but it
is not known beforehand which subsystems will
be present in the final system. To allow such a
system to gain some intelligence, they have to be
able to have a meaningful communication, i.e.
not only exchange data, but be able to ask more
“higher level questions” like, “what do you do”,
“how do you do it” and “why do you do it”. This
makes a prerequisite on the models and their
content (see Table 3).

A further explanation of the encoding needs when subsystems are combined requires consideration of
the “participants” in the communication. If a person were to assemble the subsystem, this person
could “decode” the physical structure into functions and hence obtain the goal of the assembled final
system. The person would not need explicitly stated functions and goals to make sense of the final
system. If one substitutes the person with a machine, the machine will be “dumb” and only do what
one tells it to do. It will, therefore, not be able to deduct the final system function just by knowing its
physical structure. It has no context to make functions from the structure, nor does it have the
intelligence to interpret the functions to a goal. For the machine to make sense of the final system it
would require explicitly stated functions and goals of each subsystem and how to deal with these to
construct the final system functionality and purpose.

Table 3 - What models include in different setups

 System Include in model

When knowing the whole system as in
integrated designs, modelling only needs to

includes structure because that will implicitly
include functions and goals

System boundary

Structural view

Functional view

System / Environment / Application view
The problem arises when the whole system

setup is not known. More “abstract” informa-
tion are needed from the design, both

functionality and purpose / goals, to allow
later compilation into overall system functions

and goals

Subsystem

boundary

Subsystem

boundary

Subsystem

boundary

System boundary

Structural view

Functional view

System / Environment / Application view

Combining subsystems into system requires
compilation of overall system functions and

goals. This calls for communication on
multiple levels, i.e. functions and applications

(goals) to allow for both what’s and why’s

Subsystem
boundary

Subsystem
boundary

Subsystem
boundary

System boundary

Subsystem #1

Subsystem #2

Subsystem #n

. . .

. . .

.
. .

To construct the models and their content, but to keep focus on making them as simple as possible,
working backwards would probably be sensible. As the models are intended to be a structuring of
relevant information / knowledge and to be integrated into each subsystem, it would be wise to look at
what the subsystems need to know to function in the overall system setup. The communication should
focus on what and why and not so much how. That should then help to decide what should be
modelled and put into place. To achieve this, one would have to decrease the “context gap” between
data and information and make interpretation towards knowledge easier. Of course, there are many

Figure 13 - Designing a control system [37]

ICED’07/177 10

ways to achieve this. One is to encode information and make communication explicit, so maybe it
could be based on ontology [38]. That would allow for structure, but ensure ways to expand and adapt
the communication. So, it would be an agent thinking [39] in the modularization of knowledge
needed, and inspiration should be drawn from the artificial intelligence field. Another view is offered
from computer science, that is the knowledge level [40] thinking that wants to make the purpose of the
system explicit and hence independent of the media in which it is realized.

The building blocks are now all in place, so we can summarize the arguments and present our case for
why communication should be the main focus when modularizing product knowledge and making
embedded configuration work.

7 WHY COMMUNICATION SHOULD BE THE MAIN FOCUS

It is time to make our case. The rationale for communication focus has been hinted along the way in
earlier chapters but this chapter will present a summary of it. There are two main reasons for focusing
on communication, namely the encapsulation problem and the communicating between machines
problem. Let us start with a look at the encapsulation of knowledge. To make each subsystem aware
of its role in the final system, knowledge on its physical structure, functions and goals is needed.
These three aspects have to be tied together, so that the subsystem can know what physical structure
gives what functions in order to serve specific goals. The major issue here is to identify what
information is needed from the outside to make each subsystem work, and what “services” the
subsystem can offer the overall system. By making this communication explicit on a higher level than
the physical structure level, one could simplify the communication and make it more robust (version
and upgrade tolerant). This coincides with Suh’s axiom design [41] for simpler and cleaner designs.
It will also help modelling the internal knowledge needed and to decide on what should be included.
It does not serve any purpose to have more than what is needed encapsulated in each subsystem, it is
though a problem to identify what is actually needed.

The other aspect is communication between machines, here between subsystems. As the subsystems
are “dumb” and cannot decode physical structures to functions or goals, those have to be explicitly
stated within each. A communication protocol has to be in place to tell the subsystem how to share
their inner workings and how to be able to participate in the overall system. If these were not known,
all other modelling and structuring would be for nought and would not mount anything. Knowledge is
not for much if it cannot be communicated.

8 DISCUSSION

This research is driven by the need to simplify installations of complex product systems like water
supply systems and the like. It assumes that there are several parameterized subsystems that have to
be connected to form an overall system. As parameters imply software, this is indeed kind of software
engineering related and could be seen as such. It is a sub-goal to suggest a method that is tightly
coupled with software implementation and that does not require double work in modelling and
programming. The thoughts presented here are also much related to distributed artificial intelligence.
They can be viewed as a tools for constructing such systems and even a start for a method as has been
sought after[42]. Another thing worth mentioning is that benefits from the suggested solution will only
be fully reached at a system level, meaning that initial costs of knowledge engineering might be high,
and it is only when looking at the complete life-cycle of the product system that the rationale makes
sense.

9 CONCLUSION

In this article we have presented a way to simplify setup of complex product systems with the help of
embedded configuration. To achieve this one has to focus on what subsystems need to communicate
to structure the required internal knowledge and to form a communication protocol. The
simplification of internal workings is due both to hardware- and application-induced configuration that
would take place both within the overall system and in each subsystem. By relating parameters in
such a way, user inputs should decrease drastically, and the overall usability of the installation
increases. In our case we have rationalized that this should be done with embedded configuration and

ICED’07/177 11

the expected result is enhanced usability. The next step can be said to be two-folded. Firstly, to
construct a system based on this philosophy and to show that it actually leads to the expected results.
And secondly, to further develop the modelling tools and methods for supporting the making of
embedded configuration systems or in essence, a distributed artificial intelligence system.

REFERENCES

[1] L. V. Bertalanffy, General system theory. Foundations, development, applications, Revised

repr.of 1968 ed. ed. New York: Braziller, 1973.
[2] D. Stenmark, "Information vs. Knowledge: The Role of intranets in Knowledge Management,"

Proceedings of the 35th Hawaii International Conference on System Science: IEEE, 2002.
[3] The Jensen Group, "Changing how we work: The search for a simpler way," The Jensen Group,

Northern Illinois University College of Business,1997.
[4] Mueller and Schappert, The Knowledge Factory - A Generic Knowledge Management

Architecture 1999.
[5] S. Ahmed, L. Blessing, and K. Wallace, "The Relationships between data, information and

knowledge based on a preliminary study of engineering designers,", DETC/DTM-8754 ed Las
Vegas, Nevada, USA: ASME, 1999.

[6] G. Schreiber, H. Akkermans, A. Anjewierden, R. d. Hoog, N. Shadbolt, W. van de Velde, and B.
Wielinga, Knowledge Engineering and Management: The CommonKADS Methodology.
Cambrigde, Massachusetts, USA: The MIT Press, 2000, pp. 1-455.

[7] G. W. M. Rauterberg, "The new economy: e-commerce, intellectual property rights, trust and
other dangerous things," slides from ICT congress in Netherlands: 2001.

[8] C. E. Shannon and W. Weaver, Mathematical theory of communication. USA: University of
Illinois Press, 1949.

[9] M. Lind, "Representing goals and functions of complex systems," Institute of Automatic Control
Systems, Technical University of Denmark, Copenhagen, Denmark,Technical Report 90-D-381,
1990.

[10] J. Buur and M. M. Andreasen, "Design models in mechatronic product development," Design

Studies, vol. 10, no. 3, pp. 155-162, 1989.
[11] G. Hofstede, Culture's Consequence: Comparing Values, Behaviours, Institutions and

Organizations Across Nations, 2 ed. USA: SAGE Publications Inc, 2001.
[12] B. Dervin, "Sense-making theory and practice: an overview of user interests in knowledge

seeking and use," Journal of Knowledge Management, vol. 2, no. 2, pp. 36-46, 1998.
[13] L. Skyttner, General systems theory. Singapore: World Scientific Publishing Co. Pte. Ltd, 2001.
[14] M. Lind, "Modeling goals and functions of complex industrial plants," Applied Artificial

Intelligence, vol. 8, no. 2, pp. 259-283, 1994.
[15] H. A. Simon, The Science of the Artificial, 3 ed. Cambridge, Massachusetts: The MIT press,

1996.
[16] K. Ulrich and S. D. Eppinger, Product Design and Development, Third Edition. Boston, Mass.:

Irwin McGraw-Hill, 2004.
[17] Z. M. Bi and W. J. Zhang, "Modularity Technology in Manufacturing: Taxonomy and Issues,"

International Journal of Advanced Manufacturing Technology, vol. 18, no. 5, pp. 381-390,
2001.

[18] W. Y. Zhang, S. B. Tor, and G. A. Britton, "A functional modelling approach for modular
product design," In International Conference on Manufacturing Automation: Advanced Design

and Manufacturing in Global Competition, 2004, pp. 31-38.
[19] V. Hubka and W. E. Eder, "A scientific approach to engineering design," Design Studies, vol. 8,

no. 3, pp. 123-137, 1987.
[20] Y. Iwasaki, R. Fikes, M. Vescovi, and B. Chandrasekaran, "How things are intended to work:

capturing functional knowledge in device design," In Int. Joint Conferences on Artificial

Intelligence, 1993, pp. 1516-1522.
[21] Y. Umeda and T. Tomiyama, "Functional reasoning in design," IEEE Expert, vol. 12, no. 2, pp.

42-48, 1997.
[22] G. Pahl and W. Beitz, Engineering Design – a systematic approach Springer-Verlag, 1996.

ICED’07/177 12

[23] M. M. Andreasen, "Syntesemetoder på systemgrundlag - Bidrag til en konstruktions teori [in
Danish]." Department of Machine Design, Lund Institute of Technology, 1980.

[24] U. Harlou, "Developing product families based on architectures: Contribution to a theory of
product families." PhD Thesis Technical University of Denmark (DTU), 2006.

[25] L. Hvam, "A procedure for building product models," Robotics and Computer-Integrated

Manufacturing, vol. 15, no. 1, pp. 77-87, 1999.
[26] M. Modarres and S. W. Cheon, "Function-centered modeling of engineering systems using the

goal tree-success tree technique and functional primitives," Reliability Engineering and System

Safety, vol. 64, no. 2, pp. 181-200, 1999.
[27] S. Mittal and F. Frayman, "Towards a generic model of configuration tasks," Int. Joint

Conferences on Artificial Intelligence, 1989, pp. 1395-1401.
[28] C. Forza and F. Salvador, Product Information Management for Mass Customization:

Connecting customer, front-office and back-office for fast and efficient customization Palgrave,
2007.

[29] J. S. Gero, "Design prototypes. A knowledge representation schema for design," AI Magazine,
vol. 11, no. 4, pp. 26-36, 1990.

[30] D. V. Steward, "The design structure system: a method for managing the design of complex
systems," IEEE Transactions on Engineering Management, vol. EM-28, no. 3, pp. 71-74, 1981.

[31] M. Van Wie, C. R. Bryant, M. R. Bohm, D. A. Mcadams, and R. B. Stone, "A model of
function-based representations," Artificial Intelligence for Engineering Design, Analysis and

Manufacturing: AIEDAM, vol. 19, no. 2, pp. 89-111, 2005.
[32] T. U. Pimmler and S. D. Eppinger, "Integration analysis of product decompositions," 6th

International Conference on Design Theory and Methodology, vol. 68, pp. 343-351, 1994.
[33] T. R. Browning, "Applying the design structure matrix to system decomposition and integration

problems: a review and new directions," IEEE Transactions on Engineering Management, vol.
48, no. 3, pp. 292-306, 2001.

[34] A. Kusiak and N. Larson, "Decomposition and representation methods in mechanical design,"
Journal of Mechanical Design, Transactions of the ASME, vol. 117B, pp. 17-24, 1995.

[35] R. B. Stone and K. L. Wood, "Development of a functional basis for design," Journal of

Mechanical Design, vol. 122, no. 4, pp. 359-370, 2000.
[36] Y. Kitamura and R. Mizoguchi, "Ontology-based systematization of functional knowledge,"

Journal of Engineering Design, vol. 15, no. 4, pp. 327-351, 2004.
[37] M. U. Soerensen, "Application of functional modelling in the design of industrial control

systems," Reliability Engineering and System Safety, vol. 64, no. 2, pp. 301-315, 1999.
[38] A. Gomez-Perez, M. Fernandez-Lopez, and O. Corcho, Ontological Engineering: With

Examples from the Areas of Knowledge Management, E-Commerce and the Semantic Web.
London, UK: Springer-Verlag, 2004.

[39] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2 ed. Upper Saddle
River, New Jersey, USA: Pearson Education, Prentice Hall, 2003.

[40] A. Newell, "The knowledge level," Artificial Intelligence, vol. 18, no. 1, pp. 87-127, 1982.
[41] N. P. Suh, "Axiomatic Design Theory for Systems," Research in Engineering Design, vol. 10,

no. 4, pp. 189-209, 1998.
[42] M. Wooldridge and N. R. Jennings, "Intelligent agents: theory and practice," Knowledge

Engineering Review, vol. 10, no. 2, pp. 115-152, 1995.

Contact: Gudmundur Oddsson

Technical University of Denmark
Department of Manufacturing Engineering and Management
Produktionstorvet, Building 425
2800 Kgs. Lyngby
Denmark
Tel: +45 45 25 48 00
Fax: +45 45 25 60 05
go@ipl.dtu.dk
www.ipl.dtu.dk , www.productmodels.org and www.usec.dk

