
ICED’07/209 1 

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED’07 
28 - 31 AUGUST 2007, CITE DES SCIENCES ET DE L'INDUSTRIE, PARIS, FRANCE 

 

ALIGNING PROCESS, PRODUC T, AND 

ORGANIZATIONAL ARCHITECTURES IN 
SOFTWARE DEVELOPMENT 
Manuel E. Sosa  
Assistant Professor of Technology and Operations Management. INSEAD, France. 
 

ABSTRACT  
One of the most difficult challenges when managing product development is to identify the individuals 
or design teams that need to coordinate closely their interdependencies during the design process. To 
address this challenge, the literature in product development has studied the task structure of product 
development processes, the architecture of complex products, and the communication patterns of 
development organizations. Yet, we still lack an integrated view of how process, product, and 
organizational structures align themselves when developing new products. In this paper, I introduce 
the notion of the affiliation matrix to map the product architecture onto the organizational structure 
and estimate the potential organizational communication patterns which, in turn, drive the design 
iterations identified in the development process. This approach has implications for process 
improvement, product and organization design, and project management. I illustrate the 
implementation of this approach in the context of a software development project. 

Keywords: product architecture, software development, organization design, project management. 

INTRODUCTION 
One of the most important challenges in product development is to manage design iterations and 
change propagations [1][2]. Ultimately, this can be done effectively if engineering managers are able 
to identify the individual actors involved in such iterations and the product interfaces such actors need 
to attend to. The literature in product development has studied the task structure of product 
development processes, the architecture of complex products, and the communication patterns of 
development organizations [1][3][4]. Recent simulation-based studies have investigated the interplay 
of organizational and problem structure dynamics in complex engineering projects [5][6]. Yet, we still 
lack an integrated view of how process, product, and organizational structures align themselves when 
developing new products. Previous work shows that identifying and attending the interfaces between 
product components that require special attention to coordinate during the development process is a 
challenging task, even when the product architecture maps directly onto the organizational structure 
[3][4]. The managerial challenge becomes even harder when such mapping is not direct, which occurs 
when the design of product components is assigned to various teams or individuals within the 
development organization [7]. This is common in software development projects in which many 
individual actors typically contribute to the design and integration of software components in a 
flexible development process [8]. To address this challenge, I develop a structured approach to 
integrate process and organizational structures using the architecture of the product under 
development. I introduce the notion of the affiliation matrix to map the product architecture onto the 
organizational structure and estimate potential organizational communication patterns. By 
documenting both the architecture of the product and the contribution of development actors to the 
design of each product component, one can identify potential technical interactions that would need to 
take place to coordinate the interfaces between product components. Although the approach presented 
in this paper is general, and therefore applicable to any product development effort, I illustrate its 
implementation in a software development firm, which offers additional insights particularly relevant 
for software development.  



ICED’07/209 2 

 
Previous work has studied the mapping of various dimensions of product development systems. 
Morelli et al. [7] map the process and organizational structure to predict task related interactions. They 
found that task interdependency is a better predictor of technical communication than distance-based 
models [9]. Sosa et al. [4] have studied the direct mapping of product and organizational structures in 
complex products. They found that several organizational and product-related factors significantly 
influence the misalignment of design interfaces and team interactions. Eppinger and Salminen [10] 
proposed a framework to study complexity in product development by examining the overlap between 
product, process, and organizational structures. This paper contributes to this stream of literature in 
three ways. First, this paper shows that to effectively manage intended (or planned) design iterations, 
managers need to instantiate their development process with a specific product architecture which 
allows them to predict the organizational communication patterns that need managerial attention. 
Second, I operationalize a general structured approach to align product and organizational structures 
with the use of the affiliation matrix. Third, because of the predictive power of the approach presented 
in this paper, I present a project management framework to predict the actors and their organizational 
interactions that may need special attention when developing a subset of product components, which is 
the case in flexible software development. 

RESEARCH MOTIVATION AND FRAMEWORK 
Improving product development efforts typically starts by documenting design tasks and their 
information requirements [1][2][11]. By examining the task structure of the process, managers can 
uncover the interdependent activities that are more likely to generate design iterations. The design 
structure matrix (DSM) is a matrix-based analytical tool introduced by Steward [12] and used by 
Eppinger and his colleagues to represent and organize design tasks in complex product development 
projects [1][13]. In the product domain, a matrix representation has also been used to represent 
products as networks of interconnected components [14][15][16]. Finally, in the organizational 
domain, development organizations have been considered as social networks of interacting actors that 
integrate their efforts to develop new products and services [4][6][7][9]. Therefore, product 
development systems can be considered as a network of design tasks (process architecture) put in 
place by a social network of developers (organizational architecture) to develop products composed of 
interdependent components (product architecture). These three dimensions significantly influence one 
another, and understanding their relationships is crucial to improve product development systems 
[4][10]. Moreover, I argue that to manage design iterations effectively, one must examine how 
interdependent design tasks and interdependent product components ultimately determine the 
communication patterns of the organization. Next, I examine the process structure in the software 
organization I studied and illustrate the need to instantiate such a development process with the 
architecture of a particular product under development which, in turn, determines the potential 
communication patterns of the organization during the completion of the iterative development tasks. 

Examining the process architecture 
The task structure of the development process used by the software firm I studied is represented in the 
design structure matrix shown in Figure 1. This DSM representation captures their development 
process internally documented in a multi-page process flow diagram. The matrix shown in Figure 1 is 
a square matrix whose rows and columns are identically labelled with the development tasks, and an 
off-diagonal mark, (i,j), indicates that to complete task i (labelling row i)  needs information from task 
in column j. The blocks along the diagonal of such a DSM highlight the groups of tasks that are 
executed together (in parallel, sequentially, and/or iteratively) within each phase. As evident from 
Figure 1, an important contribution of a DSM representation is the simple and explicit depiction of 
complex and iterative processes where sets of iterative activities (i.e., design iterations) can be 
highlighted. Figure 1 shows three sets of highly interdependent tasks: 1) Software architecture 
definition; 2) Software release planning; and 3) designing and integrating software features. Note that 
Figure 1 does not show unintended interdependencies that occur across phases (e.g. from the “design 
and integration” phase to the “define software architecture” phase). Instead, this DSM only shows the 
intended iterations that are planned to occur. 



ICED’07/209 3 

 
Figure 1. Software development process at the firm studied 

Figure 2 shows a closer look at the most iterative set of development tasks in the process documented 
in Figure 1. Even though managers could differentiate interdependencies by highlighting which task 
interfaces involve people from the same group, as opposed to people from different groups, the 
managerial challenge remains: they need to predict “who should talk to whom?” and “what should 
they talk about?” in order to facilitate an efficient completion of this group of planned, highly iterative 
activities. This is particularly challenging in software development because of the additive way in 
which software products are developed. In other words, in software development, product features are 
developed, integrated, and tested on the main product in an additive manner while they get external 
feedback about the evolving product [8]. Hence, for managers being able to facilitate the completion 
of the iterative set of activities shown in Figure 2, they need to understand how the software 
components that instantiate these design tasks link to one another (i.e., the product architecture) as 
well as the people responsible for contributing to the design of such software components (i.e., the 
affiliation of people to components’ design). 
 

 
Figure 2. "Design and Integration" iterative activities of the software development process 

studied 

As shown in Figures 1, having an aggregated view of how information flows among development 
tasks helps identify the tasks involved in design iterations, both within and across phases of the 
development process [1]. Yet, managing design iterations poses different challenges depending on 
whether they occur within or across phases. Managing interfaces across different phases of the 
development process can be facilitated by a process view alone (as the ones shown in Figure 1), and 
typically require preventive actions from managers to avoid major rework due to going back to 
previous phases of the development process [13]. Managing interfaces within the same phase, as the 
one shown in Figure 2, poses a significantly different managerial challenge because these are design 
iterations that are (or should be) planned and facilitated by managers. Yet, these development tasks 
typically refer to specific components of the product under development. As a result, the 
organizational interdependencies that generate such planned (within the phase) design iterations are 
determined not only by the architecture of the product itself but also by the contribution of people to 
the design of such product components. In some cases, this challenge can be facilitated by a direct 
mapping from the process structure to the product and organizational structures. For example, in a 



ICED’07/209 4 

previous study, Sosa et al. [4] shows how the detailed design tasks carried out to develop a 
commercial aircraft engine mapped directly onto the architecture of the engine (i.e., design task x was 
defined as: “complete the detailed design of engine component x”), and how the engine architecture 
mapped directly onto the organization responsible for designing the 54 main components of the 
engine. However, in many other cases, such as software development projects, the mapping is far from 
being one-to-one. As a result, we need to provide a general approach to map product architectures to 
organizational structures to effectively manage planned design iterations. Next, I describe a research 
approach to address this challenge. 

RESEARCH APPROACH 
In order to help managers to handle the planned design iterations that typically occur in the design 
phase of product development processes, I suggest a structured approach that maps the architecture of 
the product that instantiate the development process to the organization that designs it. Note that this 
approach generalizes the research approach introduced by Sosa et al. [3][4] in which the product and 
organizational structures map one-to-one.1 As seen below, I introduce the use of the affiliation matrix 
to align product and organizational structures that do not map directly. I structure the research 
approach in five steps (see Figure 3): 
 
1. Capture the product architecture. By interviewing systems architects, I identify the n 

components that form the product and the interfaces among them. Then, I document the product 
data into a product architecture matrix (P). Pn,n is a square matrix whose rows and columns are 
identically labeled with the n components of the product. A non-zero, off-diagonal cell, pij, in 
this matrix indicates that component i imposes design constraints to component j. Such 
convention is consistent with previous work in software architecture [17]. 

2. Capture actual organizational structure. By surveying the m development actors involved in the 
development of the product, I document their actual product-related interactions (or the actual 
intentions to interact) onto a square (person to person) organizational communication matrix 
(Cm,m). To be consistent with the convention used in step 1, the rows of the matrix are labeled 
with the “providers” of product-related information while the columns are labeled with the 
“recipients” of information. Hence, cell cij indicates that actor j reports actual interactions with 
actor i (i.e., actor j “goes to” actor i to request product-related information). 

3. Capture task assignment. I document the task assignment of the organization by asking the m 
development actors about their level of involvement in the design of each of the n product 
components. I document this information in an affiliation matrix (A). Am,n is a rectangular matrix 
whose rows are labeled with the m development actors and its columns are labeled the n product 
components. Hence, cell aij indicates the degree of involvement of actor i in the design of 
component j. 

4. Determine potential interactions. I introduce the following model to determine the potential 
interactions among development actors, given the product architecture matrix and the affiliation 
matrix. I define Tm,m as the potential interaction matrix whose non-zero, off-diagonal cell, tij, 
indicates that development actor i provides information to development actor j because they are 
involved in product components that share design interfaces. Hence, 

! 

T
m,m

= A
m,n
" P

n,n
" A

n,m

T  (1) 

Note that if P and A are binary matrices, then tij captures the number of components designed by 
actor j that depend on components designed by actor i. Since the affiliation matrix captures 
various levels of task involvement, I determine potential interactions for two extreme cases: 1) 
strongest involvement only, and 2) all levels of involvement. (For both cases, I assume P to be a 
binary matrix). The results of this model are captured in potential interaction matrices, which 
correspond to the two levels of design involvement.  

5. Compare potential and actual interactions. By overlaying the potential interaction matrices and 
the actual organizational communication matrix, I determine mismatches of actual and potential 
interactions associated with the development of such a product. Since I consider two potential 

                                                        
1 A one-to-one mapping of product and organizational structures is characterized by the mutually exclusive 
assignment of the design of each component of the product to one individual actor in the organization. 



ICED’07/209 5 

interaction matrices associated with extreme levels of design involvement, I obtain two 
preliminary comparison matrices. First, by considering the strongest-only level of involvement 
of people in their component design, I determine the potential interactions that are unattended 
by actual interactions. This result comes about because by considering strong-only design 
involvement, we are effectively predicting the set of most likely potential interactions among 
the people who are strongly involved in the design of product components. Next, by considering 
all levels of task involvement, I determine the actual interactions that are unpredicted by 
potential interactions. With this second approach, one can predict potential interactions that 
have the lowest probability of occurring due to a low level of involvement in design tasks. 
Hence, if an actual interaction falls outside such a wide set of potential interactions, it is 
considered a truly unpredicted interaction. I document the results of these two preliminary 
comparison matrices in the final comparison matrix.  

 

 
Figure 3. Five-step Research Approach 

A SOFTWARE DEVELOPMENT EXAMPLE 
I implemented my research approach in a software development firm. The firm is a mature, public, 

European company and one of the leaders in the market for a specific type of application for business 
customers. By the time of the data collection, the firm was allocating over 60% of their development 
resources to the development of one radically new product whose development effort had started 
within the previous 12 months. The product comprised 34 interdependent modules and the 
development organization was formed by 66 people, most of whom contributed to the conception and 
implementation of the 34 modules of the product. Two important factors facilitated the selection of the 
project studied. First, the firm was interested in examining their process, product, and organizational 
structures to accelerate the development of the product studied. Second, the architecture of the product 
studied and the development organizational structure did not map directly to each other. This provided 
an ideal opportunity to implement the five-step approach outlined above.  
 
Step 1: Capturing the software architecture. After a long concept development phase, in which the 
firm assessed their market needs and technological opportunities, they established the architecture of 
the product to be analysed in this study. The product comprised 34 modules, whose detailed design 
would address all the functional requirements of the product. System architects had also identified 
how each of these modules would depend on the others. With this information, I built a 34x34 product 
architecture binary matrix, whose off-diagonal marks, (i,j), indicate that to design the module in 
column j, designers “need to know about” the module in row i. Such a convention facilitates the 
mapping of a matrix representation to a block diagram representation commonly used in software 
development. Note that because of the highly asymmetric nature of interdependences in software 
products, I used a partitioning algorithm (instead of a clustering algorithm) to identify the highly 
interdependent modules in the product [11][17]. In sum, I built a partitioned product architecture 
matrix to capture the dependency structure of the 34 modules that formed the software product 
studied. As shown in Figure 4, the 34 modules of the product are organized into 6 groups of 



ICED’07/209 6 

components. We identified 250 critical design interfaces among the 34 modules. Although all the 
interfaces needed careful attention to ensure that the modules integrated well and the entire software 
application fulfilled its functional requirements, some interfaces would pose significant managerial 
challenges due to the iterative constraints they would impose on some of the components. Such 
interfaces are highlighted in “blue” in Figure 4. Figure 4 shows both a matrix representation and a 
block diagram of the product studied. 
 

 
Figure 4. Software Product Architecture 

 
Step 2: Capturing the formal and informal development organizational structure. The development 
organization studied was formed by 66 people organized onto 11 groups distributed in three different 
sites in Europe. Eight groups were dedicated to software development (i.e., programming), six of 
which were responsible for the design of the 34 modules of the product studied. The other three groups 
provided support to the rest of the organization in areas such as quality assurance, system architecture 
design, and technical documentation (see Figure 5). I distributed a comprehensive web-survey among 
all the 66 people involved in the development organization to capture their product-related 
interactions. I documented these data into an organizational communication matrix whose off-diagonal 
marks (i,j) indicate how often the person in column j went (or intended to go) to person in row i to 
request product-related information during the last year. Note that I sequence this matrix to capture the 
structure of the organization into its 11 functional groups; hence, I cluster together people who belong 
to the same organizational group. I got 59 complete communication surveys for an overall response 
rate of 89%. Moreover, the response rate among the developers and testers was over 95%. Figure 5 
shows the actual technical communication patterns associated with the development of the product 
studied in a 59x59 organizational communication matrix. Respondents reported 511 product-related 
interactions in which actor j “went to (or intended to go to)” actor i for product-related information. 
This results in a communication network density of 15%. 
 



ICED’07/209 7 

 
Figure 5. Actual Organizational Interaction Matrix 

Step 3: Capturing the involvement of people in the design of product modules. As part of the web-
survey, I asked respondents to rate their level of involvement in the conception and implementation of 
each of the 34 product modules. The six-point scale used to capture their level of involvement 
included the following values: “Not involved”, “Barely involved”, “Somewhat involved”, “Involved”, 
“Very involved”, and “Strongly involved”. I documented this data in a valued affiliation matrix [18]. 
The rows of the affiliation matrix are labelled identically to the rows in the organizational interaction 
matrix (step 2), while its columns are labelled identically to the columns in the product architecture 
matrix (step 1). Hence, cell (i,j) in this matrix indicates the level of involvement of the person in row i 
in the conception and implementation of the software module in column j. Finally, I built binary 
affiliation matrices for the following two cases: 1) Design involvement rated as “strongly involved” 
only; 2) design involvement rated at least as “Barely involved”. Figure 6 shows the two binary 
affiliation matrices for these two cases, respectively. 
 

 

Figure 6. Potential affiliation matrices 

Step 4: Determining potential organizational interactions. By combining the product architecture 
matrix and the affiliation matrix in the algebraic model introduced in Equation 1, one can determine 
the total number of interfaces between product modules that any pair of developers need to potentially 
coordinate on. I document the results of this model in two potential interaction matrices, whose rows 
and columns are labelled identically to the rows and columns in the organizational interaction matrix 



ICED’07/209 8 

captured in step 2. These matrices correspond to the two levels of task involvement reported in the 
affiliation matrices documented in step 3. Hence, for the case of strong-only design involvement, the 
potential interaction matrix captures 594 potential interactions. Such a matrix has a density of 17%. 
For the case of all-levels design involvement, the potential interaction matrix shows 2,306 potential 
interactions, which results in a communication network density of 67% (see Figure 7). 
 

 
Figure 7. Potential Communication Matrices 

Step 5: Comparing actual and potential interactions. I carried out this step by completing two separate 
comparisons. I do this because I use the two potential interaction matrices determined in step 4 to 
compare them with the actual organizational communication matrix documented in step 2. The first 
comparison is focused on identifying the potential unattended interactions, whereas the second 
comparison is used to uncover unpredicted organizational interactions. Potential unattended 
interactions are those that correspond to pairs of developers who are expected to interact because the 
components they design are interdependent, and no one else in the organization addresses such 
interdependences. On the other hand, unpredicted interactions are those which take place between 
development actors, even though they are not involved in the design of components that share 
interfaces with the other actors’ components. 
• First, to identify the potential unattended interactions, I compare the actual interaction matrix 

with the “strong-only” potential interaction matrix. In order to obtain the final set of truly 
potential unattended interactions, I filter out potentially “redundant interactions” associated with 
each product interface identified. I define “redundant interactions” as those associated with 
product interfaces that were matched by actual interactions between other potential “providers” 
and “receivers”. Hence, to remove redundant interactions from the initial count of unattended 
interactions, one must identify the product interfaces whose potential interactions are 
completely unmatched by actual interactions (i.e., interfaces whose “providers” and “receivers” 
do not report actual interactions). This can be done systematically by examining, one by one, 
whether the potential interactions associated with each interface are matched by actual 
interactions. Those product interfaces, whose totality of potential interactions are not matched 
by actual interactions, are defined as unmatched product interfaces, and those potential 
(unmatched) interactions are the truly potential unattended interactions. Originally, I identified 
367 potential unattended interactions which were not matched by actual interactions. Yet, after 
removing redundant interactions, only 116 truly potential unattended interactions were 
identified. Note that these truly unattended potential interactions corresponded to 36 unmatched 
product interfaces. Again, from the original set of potential unattended interactions, 251 of them 
were not considered truly potential unattended interactions because other pairs of developers, 
also involved in those product interfaces, reported actual interactions which could be associated 
with such product interfaces.  

• Second, to uncover unpredicted interactions, I compare actual organizational interactions with 
potential interactions for the case of “at least barely involved” design involvement. In this case, 
the potential interaction matrix shows a high communication density because any two people 



ICED’07/209 9 

who are “at least barely involved” in the design of any of the 34 modules, would need to interact 
with other actors if their components share interfaces. Even after controlling for such a 
possibility, I still found 72 truly unpredicted interactions (i.e., 14% of the actual interactions 
were unpredicted). These interactions took place between people who interacted (or planned to 
interact), even though all the components they designed (or contributed to) did not share 
technical interfaces.  

The aggregated results of the two comparisons are documented in a final comparison matrix shown in 
Figure 8. The red cells indicate truly unattended potential interactions, the blue cells show the truly 
unpredicted interactions, and the purple cells mark matched interactions. 
 

 
Figure 8. Final Comparison Matrix 

ANALYSIS AND DISCUSSION OF RESULTS 
An important benefit of implementing the structured approach described in this paper is that it 
provides a systematic way to identify mismatches between product and organizational architectures for 
cases where their structures do not map one-to-one. Identifying these mismatches in a systematic way 
can help managers steer their attention to areas, both within the product and the organization, that may 
require special managerial action. Two types of mismatches between potential and actual interactions 
can occur. First, truly potential unattended interactions take place between development actors who 
have not coordinated the interfaces (or do not intend to do so) of some of the software modules whose 
design they strongly contribute to. Second, truly unpredicted interactions occur between development 
actors who interact even though they are not involved in the development of interdependent modules. 
More specifically, I found that 32% of the 367 potential unattended interactions identified were truly 
unattended, while only 14% of the 511 actual product-related interactions were truly unpredicted.  
Note that in order to determine truly potential unattended interactions, I also identify the product 
interfaces that are not associated with actual organizational interactions. In this case, over 14% of the 
250 product interfaces identified by system architects had not been matched by actual interactions of 
people strongly involved in the design of such interdependent software modules.  

Factors associated with unattended and unpredicted interactions 
Analyzing the final comparison matrix further allows us to test whether unattended and unpredicted 
interactions are concentrated in few actors or are sparsely distributed throughout the development 
network. In this case, I found that truly potential unattended interactions were significantly 
concentrated in a small group of actors. In other words, 90% of the 116 truly unattended interactions 
were associated with nine actors who reported significantly fewer product-related interactions with 
others. That is good news for managers because they can focus their attention on a small set of actors 
to minimize the risk of overlooking critical product interfaces. Yet, an overwhelming 98% of the 
unattended interactions occurred across group boundaries, which confirms the importance of carefully 
identifying and managing cross-boundary interfaces. Moreover, 87% of the truly potential unattended 
interactions occurred between, or with, development actors of one of the six development groups 



ICED’07/209 10 

responsible for the design of the product studied, which suggests that such unattended interactions 
could have a detrimental impact on product performance (if they remained unattended). An important 
benefit of identifying truly potential unattended interactions is that to do so one must identify the 
product interfaces that are not matched by actual interactions. In this case, I found that 36 product 
interfaces (out of 250) were not attended by actual interactions. This provides clear guidance for 
managers on the aspects of the product architecture that the development organization is likely to 
“miss” if no special attention is paid to them. 
As for the people involved in truly unpredicted interactions, it is important to highlight that a 
significantly large proportion of them (65%) were interactions initiated by development actors outside 
the development groups. This suggests that using the architecture of the product to predict technical 
interactions with groups of the organization that perform development tasks different from “design 
tasks” has certain limitations. 

MANAGERIAL AND ACADEMIC IMPLICATIONS 
This research has important implications for both managers and academics. Research in engineering 
design has suggested that identifying design iterations is essential to manage them effectively. There 
are two types of design iterations: 1) intended, or planned, design iterations that typically occur within 
the same product development phase; and 2) unintended, or unplanned, design iterations which 
typically occur across product development phases. In this paper, I focus on managing planned design 
iterations within the same product development phase. This is particularly relevant in software 
development in which design and integration activities take place concurrently as the products are 
built. To manage these types of design iterations, it is essential for managers to identify the set of 
actors that need to interact and the interfaces they need to interact about. This paper presents a general 
and structured approach to tackling this challenge. Moreover, the systematic implementation of this 
approach to small “portions” of the product can help managers to manage design iterations at a more 
granular level because they can identify systematically the potential interactions that need to take place 
to address a subset of product interfaces. Because “potential interactions” represent the set of 
interactions that could potentially coordinate a set of product interfaces, managers must select and 
facilitate the subset of those potential interactions that would address such a subset of interfaces 
effectively. Figure 9 illustrates how, by bringing together the process, product, and organizational 
views, managers can effectively tackle the management of iterative design tasks for a subset of 
software modules. Such a project management framework is particularly relevant in software 
development, where products are developed in a flexible and additive fashion. 
 

 
Figure 9. Aligning process, product, and organizational views 



ICED’07/209 11 

Figure 9 starts with the process architecture in which the main phases of the process are highlighted, 
including the “design integration” phase in which most of the planned, yet longer, iterations take 
place. Then, to effectively manage those iterations, managers capture the architecture of the specific 
product whose software components are to be (re)designed and integrated. The architecture view can 
show the entire product architecture or focus on a subset of them. Figure 9 shows the interfaces 
associated with one group of software features only. Then, by combining the affiliation matrix and the 
product architecture matrix, managers can predict the set of potential interactions that would need to 
take place between people who strongly contribute to the design of the software features included in 
the product architecture matrix. The potential communication matrix provides managers with the set of 
people and organizational interactions to choose from to effectively coordinate the product interfaces 
in question. Note that for managers being able to choose the appropriate set of organizational 
interactions to facilitate, they must distinguish which potential interactions are “non-redundant. Those 
are the interactions that must take place because the development actors involved are the only pair of 
actors who are strongly involved in the design of a particular pair of interdependent components. For 
the example shown in Figure 9, only two potential interactions were “non-redundant”. 
 
More generally, the approach presented in this paper allows managers to identify mismatches between 
actual and potential interactions. Once mismatches are identified, managerial actions can take place in 
the product and process domain by updating the product and planning information when new 
interfaces are uncovered, or in the organization domain by reorganizing development actors to attend 
interfaces that may have otherwise been overlooked. From a theoretical viewpoint, the implications of 
this approach rest on the analytical usage of the potential interaction matrices to make predictions 
about structural properties of the actors involved in the development of a new product.  

REFERENCES 
[1] Eppinger, S.D., Whitney, D.E., Smith, R.P., and Gebala, D.A. A Model-Based Method for 

Organizing Tasks in Product Development, Res. in Eng'g. Des. 1994, 6(1), 1-13. 
[2] Clarkson, P.J., Simons, C.S., and Eckert, C.M. Predicting Change Propagation in Complex 

Design,” ASME Journal of Mechanical Design, 2004, 126(5), 765-797. 
[3] Sosa, M.E., Eppinger, S.D., and Rowles, C.M. Identifying Modular and Integrative Systems and 

Their Impact on Design Team Interactions, ASME Journal of Mechanical Design, 2003, 125(2), 
240-252. 

[4] Sosa, M.E., Eppinger, S.D., and Rowles, C.M. The misalignment of product architecture and 
organizational structure in complex product development, Management Science, 2004, 50(12), 
1674-1689. 

[5] Mihm, J., Loch, C., Huchzermeier, A. Problem-solving oscillations in complex engineering 
projects. Management Sciente, 2003, 46(6), 733-750. 

[6] Olson, J., Cagan, J., Kotovsky, K. Unlocking organizational potential: A computational 
platform for  investigating structural interdependence in design, Proceedings of ASME 
Conference on Design Theory and Methodology, 2006. 

[7] Morelli, M.D., S.D. Eppinger, R.K. Gulati. Predicting technical communication in product 
development organizations. IEEE Trans. Eng'g. Management, 1995, 42(3), 215-222. 

[8] MacCormack, A., Verganti, R., and M. Iansiti. Developing products on Internet time: The 
anatomy of a flexible product development process, Management Science, 2001, 47(1),133-150.  

[9] Allen, T.J. Managing the Flow of Technology. 1977. (Cambridge, Mass.: MIT Press). 
[10] Eppinger S.D. and Salminen V.K. Patterns of product development interactions. In 

International Conference on Engineering Design, ICED ’01, Vol. 1, Glasgow, August 2001, pp. 
283-290 (Professional Engineering Publishing, Bury St Edmunds). 

[11] Browning, T. R. Applying the Design Structure Matrix to System Decomposition and  
Integration Problems: A review and New Directions, IEEE Transactions on Engineering 
Management, 2001, 48(3), 292-306. 

[12] Steward, D. The Design Structure Matrix: A Method for Managing the Design of Complex 
Systems, IEEE Transactions on Engineering Management, 1981, EM-28(3), 71-74. 

[13] Eppinger, S.D. Innovation at the speed of information. Harvard Business Review, 2001, pp. 
149-158. 

[14] Pimmler, T.U., S.D. Eppinger. Integration analysis of product decompositions. Proceedings of 



ICED’07/209 12 

ASME Conference on Design Theory and Methodology. 1994, pp. 343-351.  
[15] MacCormack, A., J. Rusnack, and C. Baldwin. Exploring the Structure of Complex Software 

Designs: An Empirical Study of Open Source and Proprietary Code, Management Science, 
2006, 52(7), 1015-1030. 

[16] Sosa, M., Eppinger, S., and Rowles. A network approach to define modularity of components in 
complex products, ASME Journal of Mechanical Design, 2007 (forthcoming). 

[17] Sangal, N., E. Jordan, V. Sinha, D. Jackson. Using Dependency Models to Manage Complex 
Software Architecture, 2005, Proceedings of the 20th Annual ACM SIGPLAN Conference on 
Object Oriented Programming, Systems, Languages, and Applications. San Diego, CA, USA.  

[18] Wasserman, S. and Faust, K. Social Network Analysis, 1994, (Cambridge University Press, New 
York). 

Contact: Manuel E. Sosa 
INSEAD 
Technology and Operations Management Area 
Boulevard de Constance 
77305, Fontainebleau 
France 
Phone: +33 (0)1 60 72 45 36 
Fax: +33 (0)1 60 74 61 99 
e-mail: manuel.sosa@insead.edu 
URL: http://www.insead.edu/facultyresearch/faculty/profiles/msosa/ 


