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1. Introduction 
Linkage mechanisms have many uses in design and engineering. They can be used to generate 
intricate motions, with applications including assembly tasks [Reinhart & Cuiper 1999,  Lee & Hervé 
2007], packaging operations [Hicks et al., 2006, Sirkett et al. 2007], and robotics [Dai & Wang 2007]. 
Such motions are usually closed curves and often they are purely planar. 
Mechanisms are preferable to their main (mechanical) alternative which is the use of cams since they 
have better performance in terms of wear and subsequent loss of accuracy. The main drawback is the 
fact that they are difficult to design in the first place. There are normally several degrees of freedom 
involved, and it is difficult for the designer to gain an easy appreciation of the effects of these 
separately and in combination. 
The aim of this paper is to explore a means for creating computer-based catalogues of mechanisms 
which store the parameters for the mechanism along with its output motion. Catalogues have been 
used successfully in other areas of design, notably component selection [Vogwell & Culley 1991], 
and, with the increasing rise of web-based catalogues from component suppliers, they are used with 
familiarity by the modern designer. 
The main obstacle to be overcome is how to describe the output path in a form that is suitable for 
storage in a catalogue. This is achieved by the use of Fourier analysis and the basic theory for this is 
given in section 2. Some of the Fourier coefficients can be given physical meaning and, as discussed 
in section 3, this allows an output path to be “normalised”. Section 4 explains how a catalogue can be 
set up and used, and section 5 indicates how any selection from the catalogue can be made more 
optimal and how several selections can be used to explore the local design space. 

2. Theory 
One application of mechanisms is in the creation of specialised motions [Molian 1982, Brix et al. 
2006]. These are often in the form of closed curves which can be used for various applications 
including the movement of product or the implementation of complex assembly operations. As an 
example, consider the simplest mechanism which is the four bar chain. Figure 1 shows a “stick” 
diagram of the typical one such mechanism. There are three moving links: the crank, the coupler and 
the driven; the fourth link is the base which is here regarded as being fixed. As the crank is rotated, so 
the other two moving links are set in motion. The coupler link is shown with an offset point which is 
the end-effector for the system in this case. During the motion, the closed path, shown as a sequence 
of points, is traced out. One portion of this motion is approximately a straight line segment. So with 
some repositioning, the mechanism can be used to push product along a horizontal conveyor and then 
return by passing over the top of the next product that appears. 
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Figure 1. Four bar mechanism with an output path and its parameters 

Most mechanisms that appear in industrial machines are essentially two dimensional and so it is also 
assumed here that the path is planar. In order to be able to classify and compare output paths, it is 
necessary to have some means for describing them numerically. One way to do this is in terms of a 
Fourier representation [McGarva & Mullineux 1993] and it is this approach that is reviewed here. 
The complex plane is used for modelling the output path. This means that the typical point on the path 
is regarded as a complex number of the form 

z(t)  =  x(t) + iy(t) (1) 

where i is the square root of (-1) and t is a parameter which is regarded as being related to the angle of 
the driving crank. For simplicity, it is assumed that the parameter is normalised so that t passes 
between 0 and 1 as a single full cycle of the mechanism takes place. 
The standard Fourier theory (assuming that z(t) satisfies Dirichlet’s conditions) [Apostol 1957] says 
that z(t) can be represented as the doubly infinite series 

z(t)  =  ∑ cm exp(2πimt) (2) 

where the series is summed between m = -∞ and m = +∞, and the constant coefficients cm are normally 
non-real. These coefficients are given by 

cm  =  ∫ exp(-2πimt) z(t) dt (3) 

where the integral is over a full cycle, that is between t=0 and t=1. For convenience, the coefficient c0 
is called the fundamental, coefficients c1 and c-1 are regarded as forming the first harmonic, 
coefficients c2 and c-2 the second harmonic, and so on. 
Normally the output path is not easily expressed as an explicit function. Instead it is available as a 
sequence of points along the curve. This is not a problem as the integrations can be carried out 
numerically. Suppose N points are given 

z0, z1, z2, ..., zN-1 (4) 

where, when necessary, this sequence is regarded as being circular so that zk is the same as zk-N. If it 
assumed that the points correspond to equally spaced values of the parameter t, then the step length for 
numerical integration is (1/N) and the trapezium rule provides the following approximation for the 
Fourier coefficients (using the fact that the path closed) 

cm  =  (1/N) ∑ zk exp(-2πimk/N) (5) 
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where the sum is between k = 0 and k = N-1. 
In the case when m=0, it is seen that the fundamental coefficient is simply the average of all the points. 
It thus represents their centroid. This means that z(t) - c0 represents a closed curve whose centroid lies 
at the origin of the complex plane. Now consider the first harmonic terms, specifically the function 

z1(t)   =   c1 exp(2πit)  +  c-1 exp(-2πit) (6) 

With some manipulation, this can be rewritten in the form 

z1(t)  =  exp(iα) [ (r1 + r-1)cos(2πt + β) + i(r1 - r-1)sin(2πt + β) ] (7) 

where 
 r1  =  |c1| 
 r-1  =  |c-1| 
 α  =  [arg(c1) + arg(c-1)]/2 
 β  =  [arg(c1) - arg(c-1)]/2 
 
In the last expression for z1(t), the term inside the square brackets represents an ellipse. The centre of 
this ellipse lies at the origin of the complex plane and its semi-major and semi-minor axes have lengths 
(r1 + r-1) and (r1 - r-1). The effect of the multiplying complex exponential exp(iα) is to rotate the ellipse 
through an angle α anticlockwise. This is shown in figure 2. If r1 is larger than r-1, then the semi-major 
axis has positive length and the ellipse is drawn anticlockwise as t varies from 0 to 1. If r1 is smaller 
than r-1, then the curve goes clockwise. If r1 = r-1, then the ellipse collapses to a straight line lying at 
angle α to the real axis. 

 
Figure 2. Ellipse for first harmonic terms 

Similar considerations apply also to pairs of higher harmonic coefficients. The expression 

zm(t)   =   cm exp(2πimt)  +  c-m exp(-2πimt) (8) 

also represents an ellipse centred at the origin. The main difference is that this is traced out m times as 
the parameter t passed from 0 to 1. 
Figure 3 shows an example of the decomposition of a closed curve. The main part of the figure is the 
original curve itself. The parts numbered 1 to 5 are the results of forming the partial sums up to first 
through to the fifth harmonics. It is clear that the original curve is reasonably accurately reproduced 
with just three harmonics. This is also seen in table 1 which lists the complex Fourier coefficients of 
the fundamental and first five harmonics. It is seen that the (absolute) values of these tend to decrease 
as the higher harmonics are reached. 
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Figure 3. Decomposition of a closed path curve 

Table 1. Fourier coefficients for closed path in figure 3 
 

m cm 
-5 -0.051 + 0.016i 
-4 0.110 - 0.070i 
-3 -0.291 - 0.059i 
-2 0.644 - 0.080i 
-1 -0.865 + 1.983i 
0 0.572 - 0.603i 
1 0.055 - 6.787i 
2 -0.418691 - 1.297i 
3 0.316 + 0.433i 
4 -0.076 + 0.115i 
5 -0.027 + 0.069i 

3. Physical significance 
It is possible to assign geometric significance to the Fourier coefficients for the fundamental and the 
first harmonics. This enables some normalisation of the Fourier coefficients, and hence also of the path 
itself, to be carried out. Firstly, as noted in the previous section, the fundamental coefficient c0 simply 
represents the centroid of the original path. All this signifies is the position in the plane where the path 
lies: it does not affect the actual shape. Replacing coefficient c0 by zero preserves the shape of the 
curve but moves its centroid to the origin of the complex plane. 
Now consider the first harmonic coefficients c1 and c-1. Together these correspond to an ellipse in the 
complex plane whose major axis is at angle α  =  [arg(c1) + arg(c-1)]/2 to the real axis. If each Fourier 
coefficient is multiplied by exp(-iα), then the whole path is rotated about the origin and the major axis 
for the ellipse of the first harmonic is brought along the real axis. This leaves the shape of the path 
unchanged but brings its “widest part” parallel to the real axis. 
Of the coefficients, c1 and c-1, it can be assumed that the first of these has the larger absolute value. If 
this is not the case, then all pairs of coefficients cm and c-m can be interchanged: this is equivalent to 
changing the sign of the parameter t and hence does not change the shape of the path. Now divide all 
the Fourier coefficients by |c1|. This has the effect of applying a scaling factor to the entire path curve: 
it does not affect its shape, only its overall size. The value of |c-1| is a measure of how nearly circular 
the path is, with smaller values corresponding the more circular case. 
The first harmonic coefficients now have the form exp(iβ) and |c-1|exp(-iβ). Changing the parameter t 
to (t + β/2π) has the same effect as multiplying each coefficient cm by exp(-imβ). This change of 
parameter again does not affect the shape and allows the coefficients c1 and c-1 to both be taken as real, 
with the former equal to unity. 
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In this way, normalisation can be undertaken which eliminates the effects of: 
• position of the path in the plane 
• rotation of the path about its centroid 
• direction in which the path is traced out 
• size of the path 
• where the path starts being traced out 

Of these, only the first second and fourth relate to the actual geometry; the other two only change the 
form of the parameterisation. Figure 4 shows the effect of normalising an example path. 

 
Figure 4. Normalisation of a closed path curve 

4. Catalogues 
For a given topology, the form of the geometry of a mechanism is essentially parametric. A four bar 
mechanism depends upon nine parameters. These are shown in figure 1: two pairs of the parameters 
form the coordinates of the fixed pivot positions, three specify the lengths of the links, and the final 
two determine the position of the end-effector with respect to the coupler link. 
This parametric form allows catalogues of mechanisms and their output motions to be created. The 
procedure is as follows and relies upon having some means of computer-based simulation of a 
mechanism. For a given topology, the simulation is carried out iteratively, at each stage changing the 
parameters so that they run over a large range of values. Some choices of parameters provide a 
mechanism that cannot be assembled or that cannot be fully cycled: these are ignored. If the operation 
is successful, then the output path is recorded as a sequence of points corresponding to equal steps of 
the driving link. The Fourier coefficients of this output motion are then determined. The catalogue is 
created (as a text file) by listing the parameters of the mechanism (together with a flag value giving its 
type) alongside the Fourier coefficients of its motion. 
The size of the catalogue can be reduced by using the normalisation idea. For any mechanism, once 
the Fourier coefficients of its motion are found, they are normalised. The corresponding normalisation, 
for position, orientation and size, is also applied to the parameters of the mechanism. If this is done, 
there is no need to explore all changes in the parameters. The position of two of the fixed pivot 
positions of a mechanism of a given topology may as well be kept fixed as varying them (keeping all 
the others fixed) merely affects position, orientation and size. 
To use the catalogue, the following procedure is used. Given a required output motion, specified as a 
sequence of points, its Fourier coefficients are firstly determined. These are then normalised and then 
compared with values in the catalogue. The comparison is to take the differences between 
corresponding values, form the squares of these and take the square root of their sum (thus forming a 
Euclidean distance). Those entries are found in the catalogue which give the smallest values of this 
measure. Once found, the reverse of the normalisation applied to the desired output is applied to the 
best mechanisms to “unnormalise” them. It has been found beneficial to implement this search process 
so that the ten (or so) best mechanisms are shown to the user. This means that he/she can see the 
alternatives and make an informed choice, possibly based on secondary considerations. 
The central part of figure 5 shows a desired motion path. Around it are shown some example 
mechanisms obtained by the above process which attempt to generate this motion. They have varying 
degrees of success. This desired motion is in fact difficult to obtain precisely as the path is re-entrant. 
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Figure 5. Mechanisms to generate a given path 

5. Improvement in motion path 
The catalogue idea is really intended as giving initial design solutions from which better ones can be 
developed. In this way, it acts as a computer-based version of the more traditional atlases of standard 
mechanisms (e.g. [Chironis 1966]). However, in practice, it has been found that usually at least one 
result obtained from a catalogue search is good enough to be used directly. 
If there is a need to improve a mechanism to obtain a better match to a desired path, there are several 
ways in which this can be done. The simplest is to allow the mechanism parameters to vary by small 
amounts and see what effect this has upon the output motion. Since the measure of the similarity of 
two sets of Fourier coefficients is available, it is possible to treat this as a function of the mechanism 
parameters and adopt an optimisation strategy. In this way the catalogue is used to provide “seed” 
mechanisms to act as starting points for the optimisation process. 

 
Figure 6. Improvement of a transfer mechanism 

In other cases, it may be necessary to add criteria beyond simply the motion profile. Figure 6 shows a 
case study involving a transfer mechanism to take product from one conveyor and place it on another 
moving at right angles to it. There is a speed difference in the conveyors so that the first moves at 
approximately 11 times the speed of the other. The motion suggests the need for a roughly triangular 
path. The left side of figure 6 shows a mechanism obtained by a catalogue search. However, the actual 
path is less critical than the need to match the velocity with that of the relevant conveyor during 
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picking and placing. Specific speed requirements are specified at the two points in the path shown as 
filled dots. To achieve these, an optimisation process is started in which the mechanism parameters are 
varied with the aim of reducing the speed differences to zero. This process is shown in the central part 
of figure 6, and the last part shows the mechanism finally achieved. Here the path has changed 
considerably, but the speeds match exactly those required. 

 
Figure 7. Three mechanism instances and surface of performance of interpolated mechanisms 

An alternative approach is to treat the results from a catalogue search as “instances” of possible 
mechanism design and then to use these as a means for investigating the local design space [Singh et 
al. 2007]. This requires access to some form of parametric modeller and simulator for mechanisms. A 
number of mechanism instances, say three, are taken directly from the catalogue. Interpolation 
between these is then performed so as to create a range of additional instances. Each new interpolant is 
created by forming its parameters as the same weighted average of parameters from the instances. The 
resultant path is then compared to the desired path and the measure of its closeness obtained. A surface 
plot of the results can be produced for visualisation. An example is shown in figure 7. The three 
instances are shown and together with the corresponding surface. Here the surface is roughly flat and 
slightly sloping and a minimum is appears along one edge. This suggests that this design solution is 
insensitive to changes in the parameters. In other case, the surface produced may be less flat 
suggesting that there may be problems if the real mechanism were subject to manufacturing errors. It 
may also happen that the surface contains some form of “ridge” separating one part of the surface from 
the rest. Thus suggests that the original instances lie in two different families of related mechanisms. 
In any case, the surface form gives information about the quality of any design solution that is chosen. 

6. Conclusions 
The interest in this paper is in the creation of catalogues of mechanisms and their output motions so as 
to provide an aid for a designer who needs to find a mechanism to produce a given path. It is seen that 
closed curves can be described in terms of sequences of Fourier coefficients expressed as complex 
numbers. Normalisation can be carried out to standardise the curve geometry so that its centroid lies at 
the origin and its scale and orientation are standardised. 
A mechanism catalogue can then be created by running simulations of particular mechanism forms 
with changes of parameter, and then storing those parameters together with the Fourier coefficients of 
their output paths. The normalisation helps to reduce the physical size of the catalogues  files. To find 
a mechanism for a given path, that path is normalised, compared with entries in the catalogue, the best 
match found, and the corresponding mechanism unnormalised. 
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Once one or more mechanisms are found, the match can be improved by further optimisation, perhaps 
with the inclusion or other requirements. Entries from the catalogue can also be used as design 
instances to start exploring the local design space. 
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