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ABSTRACT

The two-phase decomposition method has two major components: dependency analysis and
partitioning analysis, which offer necessary sub-functions for problem decomposition [1]. While
dependency analysis focuses on analyzing the dependency structure of a given design problem,
partitioning analysis utilizes the results from dependency analysis to identify design sub-problems and
their interaction. In the original version of the two-phase method, only two types of coupling in a
design problem are considered: coupling between any two parameters and coupling between any two
functions. This methodological arrangement has overlooked the coupling between a design function
and a design parameter. Thus, this paper proposes a revision of the two-phase method by considering
this type of coupling. The revised two-phase method uses the approach of coupling matrix
concatenation to unify different types of coupling, and it can simplify and expedite the original
decomposition process. The examples of the relief valve and powertrain systems are used to
demonstrate the utility of the revised method.
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1 INTRODUCTION

1.1 Matrix-based Problem Decomposition

Consider a design problem involving n parameters to be configured subject to the satisfaction of m
functions. To capture the dependency relationships among these parameters and functions, a
rectangular matrix is applied in which the matrix’s rows (symbolized 7;) and columns (symbolized c;)
represent the design problem’s functions and parameters, respectively. The value of each matrix entry
(symbolized mj;) can be either positive (indicating the non-zero degree of dependency) or zero
(indicating the absence of dependency). Mathematically, the rectangular matrix (symbolized as M)
representing a design problem can be defined as

M=[my,(i=1,2,...,mj=1,2,.., n) (1)

Thus, each matrix entry (m;) indicates the strength of dependency between the function corresponding
to row 7; and the parameter corresponding to column ;.

Given a rectangular matrix to represent a design problem, problem decomposition is performed to
transform an unorganized matrix into a block-angular matrix that, in general, consists of blocks and an
interaction part. The blocks represent the sub-problems identified by decomposition, and the
interaction part accounts for the coordination imposed on the sub-problems.

In literature, various algorithms have been proposed to decompose a rectangular matrix in order to
show the decomposed blocks and their interaction. Initial efforts can be found in the development of
matrix-based algorithms to partition a system of equations [2], [3]. In the context of group
technology, various matrix-based algorithms have been proposed to find the machine-part matching,
including the rank-order clustering algorithm [4], the clustering identification algorithm [5], [6], and
the branch-and-bound algorithm [7]. In addition, other formal approaches have been proposed to
address problem decomposition specifically, such as the bond energy algorithm [8], the network
reliability approach [9], the hypergraph approach [10], and the integer programming approach [11].
Among these matrix-based decomposition methods, the two-phase method is unique since it applies
clustering analysis for decomposition. The benefits of the two-phase method can be described in two
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major aspects. First, this method decouples the function of matrix-based decomposition into two sub-
functions handled by two method components: dependency analysis and partitioning analysis. The
function of dependency analysis focuses on probing and analyzing the given dependency structure of
the design problem. In contrast, the function of partitioning analysis utilizes the information from
dependency analysis to partition the design problem according to some decomposition criteria (such as
the number of sub-problems, the size of interactions, etc). This functional decoupling facilitates an
expedited means for re-decomposition by simply changing decomposition criteria without resort to
dependency analysis [1]. Thus, the two-phase method is flexible to explore different decomposition
solutions.

Second, as the core technique of the two-phase method is clustering analysis, its methodological
framework is designed as an open architecture, which allows researchers to articulate and reason how
to perform matrix-based decomposition systematically [12]. Also, this framework allows us to
explore different decomposition-related concepts, such as decomposability and complexity [13]. In
the next sub-section, we will provide an overview of the two-phase method.

1.2 Overview of the Two-Phase Method

The workflow of the two-phase method is illustrated in Figure 1. The function of the two-phase
method is to partition the original design problem, which is represented by a rectangular matrix, into a
set of linked sub-problems in the form of block-angular matrix. Since the elements of the input matrix
are disorderedly scattered, Phase 1 of the method, (namely, dependency analysis) is invoked to re-
arrange the matrix’s rows and columns such that the highly-coupled rows and columns are brought
close to each other. As a result, a banded diagonal matrix is formed, which is the input of Phase 2 (see
Figure 1b). In Phase 2, partitioning analysis is invoked to transform the banded diagonal matrix into a
block-angular matrix according to some decomposition criteria, such as the number of blocks and the
size of interaction. As a result, the block-angular matrix indicates decomposed blocks and their
interaction (see Figure 1c).

Phase 1: Phase 2:
Dependency Analysis Partitioning Analysis
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a) Original matrix b) Banded diagonal matrix c) Block-angular matrix

Figure 1. Workflow of the two-phase decomposition method

The foundation of dependency analysis (Phase 1) is hierarchical cluster analysis (HCA), which
provides a systematic approach to classify objects by comparing their attributes [14]. In the context of
problem decomposition, two types of objects need to be clustered according to their coupling
information: functions and parameters. Two functions are said coupled when they both depend on the
same parameters. Two parameters are said coupled when they both affect the same function(s). For
instance, consider the sample matrix in Figure 1a. Functions (rows) #3 and #5 are coupled since they
depend on Parameters (columns) #9 and #10. Similarly, Parameters (columns) #1 and #2 are coupled
since they both affect Function (row) #7. Such coupling analysis allows us to quantify the coupling
values between any two rows and between any two columns.

Adapting the HCA techniques, a row tree and a column tree (or dendrograms) can be constructed to
present a nested structure to group the objects, as shown in Figure 2a & 2b for the sample matrix. The
tree’s leaves are labeled to represent the corresponding rows or columns (e.g., r9 represents Row #9).
Given a tree structure, each branch represents a set of rows or columns. For instance, the top left
branch of the row tree in Figure 2a shows that Functions (rows) #9, #3 and #5 should be put in one
group, while the others should be put in another group. Inspecting the branches further down can
reveal more groupings in a nested structure.
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However, the matrix-based problem decomposition is different from the problems traditionally
addressed by HCA since it requires simultaneous clustering of rows and columns. By simply handling
rows and columns separately does not yield the banded diagonal matrix. For instance, suppose that a
row tree and a column tree are generated separately for the sample matrix, and their results are shown
in Figure 2a & 2b. Based on the tree information, the rows and columns of the original matrix can be
re-arranged based on the sequences of the leave labels. Figure 2¢ shows the re-arranged matrix, which
only presents scattered clusters. Thus, three subsequent algorithms have been developed for Phase 1
(namely, branch node sequencing, tree branch association, and tree association). The purpose of these
algorithms is to compact the formed clusters and align these clusters along the diagonal direction [15].
Given the banded diagonal matrix as the input, Phase 2 is invoked to partition the matrix by
considering the decomposition criteria. The core of matrix partitioning is the systematic placement of
partition points to the diagonal matrix to define the boundary of the blocks and identify the
interactions among blocks. Our past research has proposed the enumerative approach (which
identifies all block-angular matrices that satisfy decomposition criteria) [1] and the heuristic approach
(which quick identifies a satisfactory decomposition solution) [16].
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Figure 2. lllustration of trees and the sample matrix with scattered clusters

1.3 Paper’s Motivation and Outline

As discussed before, the two-phase method offers a novel framework to partition a design problem
systematically. However, one deficient area has been found in the algorithmic design. As the tree
construction algorithm only focuses on the coupling measures between rows and between columns to
form clusters, the grouping according to row couplings does not necessarily correspond to the
grouping according to column couplings. As a result, the clusters after the tree construction algorithm
are often scattered and subsequently three more algorithms are required in Phase 1 to compact and
align the clusters to form the banded diagonal matrix.

Furthermore, even the row and column trees are obtained after Phase 1, the given tree information
does not often suggest a proper way to partition the diagonal matrix. The reason behind is also due to
the lack of the coupling measure between rows and columns. As a result, a partition point search
method (both enumerative and heuristic) is required to yield decomposition solutions.

Therefore, it is motivated to derive a coupling measure between a row and a column in the context of
problem decomposition. This effort is expected to simplify the Phase 1 procedure by eliminating three
subsequent algorithms. Also, the tree information can be greatly utilized to partition a design problem.
Then, any partition point search method can be viewed as an assistant tool (rather than necessity) to
yield decomposition solutions.

The rest of the paper is organized as follows. Section 2 will introduce the revised two-phase method
with the detailed description of methodological components. Section 3 will test the revised method
via two case studies: relief valve system and powertrain system. Section 4 will provide the closing
remarks of this paper.

2 REVISION OF THE TWO-PHASE METHOD
2.1 Coupling Matrix Concatenation

In the original version of dependency analysis (Phase 1), we have developed a rational foundation to
evaluate the coupling of two elements of the same type. That is, we have studied the coupling of any
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two functions (rows) and any two parameters (columns). If two rows (or columns) are said highly
coupled, they would have a high chance to be grouped in the same block after decomposition.
Accordingly, a coupling matrix is employed to record the coupling values of any two objects. As
such, two types of coupling matrix have been classified: row coupling matrix (which records coupling
values between rows) and column coupling matrix (which records coupling values between columns).
To measure the coupling between rows and between columns, the min/max coefficient (symbolized as
Ryuinmax) has been derived, which utility has been justified in [16]. The formulations of the min/max
coefficient for rows and columns are given in (2) and (3) as follows:

Zmin(m[k,mjk)
rar)=tt————— i, j €[l,m] @

Zmax(mik,m/k)
k=1

R

—

Zmin(mki,mkj.)
Rmin max(ci’cj):k,”:li i,jE[l,n] (3)
D max(m;,my;)

k=1

where m and n denote the numbers of rows and columns, respectively. For the sample matrix in
Figure 1, the corresponding row and column coupling matrices are given in Figure 3a & 3b.
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Figure 3. Coupling matrices of the sample matrix

However, the above coupling analysis does not explicitly consider the coupling between a row and a
column, and such coupling does affect the formation of blocks during decomposition. The omission
of such coupling can be used to explain why we need subsequent algorithms after tree construction to
align the clusters in a proper way. In the following, we will discuss how to measure the coupling
between a row and a column.

Consider the sample matrix in Figure 1. The 1% row and the 1* column are not coupled because the
corresponding matrix entry is zero. In contrast, the 1* row and the 2™ column are coupled due to the
presence of the non-zero element at (1,2). Then, the 1% row and the 2™ column may be grouped in one
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block after matrix partitioning. At this point, we want to quantify the corresponding coupling value so
that we can study how likely this row and this column are grouped in one block after matrix
partitioning.

In this context, let us consider the non-zero element at (1,2) (1* row, 2™ column). The 1* row has
three non-zero elements. Besides the 2™ column, the 1% row may be grouped with the 6™ and 7
columns. Similarly, besides the 1% row, the 2™ column may be grouped with the 6™ and 7" rows. For
comparison, consider the non-zero element at (2,1) (2™ row, 1 column). The 2™ row may be grouped
with the 1% and 3™ columns, and the 1* column may be grouped with the 2™ and 7™ rows only. Since
the 2™ row and 1" column have less choice to be combined with other columns and rows respectively,
the coupling between them (compared with the 1* row and the 2™ column) is higher-.

Accordingly, the likelihood of the 1% row and the 2™ column being grouped in one block is weakened
by other non-zero elements along the corresponding rows and columns. Let M = [m;] be the input
matrix. The coupling between the ith row and the jth column (a;) is quantified as follows.

oM @)

y = n n
S Sm,
k=1 k=1

The value of a;; is bounded between zero (no coupling) and one (the ith row and the jth column have to
be grouped in the same block). Then, we can get three coupling matrices to record dependency values
between two rows (CM,), between two columns (CM,), and between a row and a column (CM,.).
Using the sample matrix in Figure 1, these three types of matrices are provided in Figure 3. Then, we
can construct a square, symmetric CM (i.e., concatenated coupling matrix) that combines these three
types of coupling matrices as follows.

WC : CMC W’C : CM}‘CT
W, CM,, w,-CM,

CM = ©)

This combined CM can be used to construct a tree using the existing tree construction algorithm.
Figure 4a shows the constructed tree of the sample matrix based on CM. Based on the sequence of
leaf labels of the tree in Figure 4a, we can obtain the diagonal matrix, as shown in Figure 4b.
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Figure 4. Tree and diagonal matrix according to the concatenated coupling matrix
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2.2 Revised Tree Construction Algorithm

Through coupling matrix concatenation, a banded diagonal matrix can be obtained after the tree
construction algorithm without resort to the subsequent algorithms. This is the original contribution of
this paper. By referencing the original tree construction algorithm [1], the procedure of the revised
tree construction algorithm is provided below, along with the sample matrix for illustration.

Step 1: Evaluation of coupling

Compute the coupling between rows according to Equation (2), the coupling between columns
according to Equation (3), and the coupling between rows and columns according to Equation (4).
The coupling matrices of the sample matrix have been recorded in Figure 3.

Step 2: Concatenation of coupling matrices
Construct the concatenated coupling matrix according to Equation (5). Assign the weights. In this
paper, we set w, = w, = 1, and set w,. according to the criterion formulated below.

%[ZCM%MZCM%J

This criterion essentially indicates that the weighted average coupling of CM,, should be larger than or
equal to the average coupling of both rows (CM,) and columns (CM.).

It has been briefly observed that the weight assignment will affect the shape of the banded diagonal
matrix. In general, if a heavier weight is assigned for CM,., more non-zero matrix entries are gathered
along the diagonal with few of them remotely scattered from the diagonal. Figure 5 shows two
diagonal matrices, which are obtained according to two different weights. Figure 5a represents the
light weight assignment for w,. so that the non-zero matrix entries are somehow scattered around the
main diagonal. For the case of heavy weight assignment for w,., Figure 5b shows that most of the
non-zero matrix entries are gathered along the diagonal with few entries scattered far from the
diagonal. It should be mentioned that how diagonal shapes affect the final decomposition solutions is
still an open research question. The criterion formulated in (6) works fine with our examples.

6

5
a) Diagonal matrix with w,.= 0.3 b) Diagonal matrix with w,.= 10

Figure 5. Two diagonal matrices based on two different weights

Step 3: Tree branch construction

Pick two objects that yield the highest value from the concatenated coupling matrix (CM). Then, label
the leaves of the tree according to the picked objects. Form the branch of the tree by combining the
leaves (or branches). The vertical axis of the tree is labeled with the coupling values. The leaves (or
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branches) are merged to form a new branch at their coupling value. For instance, the highest coupling
value in Figure 3 is the coupling between Columns #9 and #10, which value is 0.67. Accordingly,
their leaves are combined into a branch at 0.67 according to the vertical axis, as shown in Figure 4a.

Step 4: Coupling matrix update
Modify the coupling matrix (CM) to represent the newly formed branch. Such modification is
achieved through the average distance formulation as follows [1]:

7o+,
[ ’sz‘ I<k<n k#i k#j )

i)k

where 7 is the coupling value between the ith and kth objects in CM, and the subscript ij refers to the
newly combined branch.

Step 5: Iteration check
Repeat Step 3 and Step 4 until the concatenated coupling matrix (CM) cannot be further reduced.

The resulting tree of the sample matrix is obtained and shown in Figure 4a. The label order at the
bottom of the final tree basically indicates the order of rows and columns. Re-arrange the rectangular
matrix using this order. A banded diagonal matrix can be obtained accordingly. The resulting banded
diagonal matrix of the sample matrix according to the constructed tree is shown in Figure 4b.

2.3 Tree-based Partitioning Analysis

The benefit of considering the coupling between rows and columns are not just the avoidance of
subsequent algorithms after tree construction to form a banded diagonal matrix. Also, it allows
valuable tree information to facilitate matrix partitioning. The resulting algorithm can yield
decomposition solutions quicker and of better quality.

The resulting tree after dependency analysis essentially captures a nested structure, reflecting how
objects should be clustered according to their coupling relationships. For instance, according to the
resulting tree of the sample matrix (i.e., Figure 4a), the top branch reflects the composition of two
clusters. By cutting the top branch as indicated in Figure 4a, two clusters of objects are identified.
These two clusters in facts represent a partition point on a diagonal matrix, as shown in Figure 4b. If
three clusters are desired, we can subsequently cut the second top branch, which can lead to three
branches, indicating the composition of three clusters (or groups).

Based on the property of the tree after dependency analysis, we can consider that each branch
corresponds to a partition point on the banded diagonal matrix. By checking the tree’s branches from
top to bottom, we can generate a list of partition points with priority sequence. The partition point
according to the top branch represents a good location to divide the banded diagonal matrix based on
the coupling information. For the sample matrix, the three-block decomposition solution according to
tree-cutting is shown in Figure 4c¢, which is considered a good decomposition solution.

In addition to the coupling information, the matrix partitioning algorithm should also be capable to
generate decomposition solutions according to some criteria specified by the users, such as the size of
blocks and interaction. Given below is the algorithm of matrix partitioning, which utilizes the tree-
based coupling information.

Step 1: Specification of decomposition criteria
The decomposition criteria considered in the algorithm include the number of blocks, the maximum
size of the interaction (number of interaction columns), and the minimum size of the block.

Step 2: Collection of partition points

By breaking the branches of the final tree from top to down, collect the corresponding partition points
in the same order, which indicates the priority of applying the partition points. For instance, the top
two branches of the sample tree correspond to two partition points, as shown in Figure 4b.
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Step 3: Application of partition points

Apply partition points subsequently to the banded diagonal matrix according to their priority order.
Each time when a partition point is applied, we check the tentative solution with the decomposition
criteria. If the tentative solution satisfies the criteria, we keep the point as part of the solution.
Otherwise, we discard the point and search for the next point on the priority list.

In the past, two versions of matrix partitioning have been proposed: enumerative approach [1] and
heuristic approach [16]. Comparatively, the proposed tree-based matrix partitioning algorithm has
several benefits. First of all, the tree-based matrix partitioning is able to “short-list” a set of good
partition points, which can be applied subsequently to search for desirable decomposition solutions.
This practice can largely reduce the search space, as compared to the enumerative approach. Also, the
tree-based approach has directly utilized the tree-based coupling information from dependency
analysis, whereas the heuristic approach needs to “re-analyze” the coupling information from
dependency analysis to collect a set of good partition points. The solution quality according to the
tree-based partitioning approach will be illustrated in Section 3.

3 CASE STUDIES AND COMPARISON

The purpose of this section is to illustrate and justify the proposed coupling matrix concatenation and
the corresponding tree-based approach for matrix partitioning. For comparison purpose, two examples
found in matrix-based decomposition literature are used: relief valve system and powertrain system.

3.1 Relief Valve System

The relief valve system is adapted from [17], which consists of 49 parameters and 29 functions.
Figure 6a shows the rectangular matrix that captures the dependency relationships among these
parameters (represented in columns) and functions (represented in rows). In this application, a two-
phase decomposition method is used to divide the original system into sub-systems for design purpose.
In dependency analysis, the revised tree construction algorithm according to coupling matrix
concatenation is applied. The resulting diagonal matrix is obtained and shown in Figure 6b. As seen,
the revised tree construction algorithm is able to yield a banded diagonal matrix without resort to the
subsequently algorithms that are present in the previous version of dependency analysis.

a) Original matrix b) Diagonal matrix

Figure 6. Original matrix and diagonal matrix of the relief valve system

In Phase 2, the tree-based matrix partitioning is applied. For the decomposition criteria, the minimum
block size is set as 4 columns, and the maximum interaction size is 20 columns. Note that these
criteria are loosely set. If these loosely-set criteria are applied for the enumerative partitioning
approach, the computational time will become very long (e.g., several hours). In contrast, the
computational time of the tree-based approach is relatively short (e.g., several seconds) and is not
sensitive to the decomposition criteria. We will search the decomposition solutions with different
numbers of blocks (from two to six blocks). For comparison, the decomposition solutions via the
enumerative approach are also obtained.
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To estimate the quality of a decomposition solution, the matrix-based complexity metric is used [13].
This metric approximates the complexity entailed in a block-angular matrix by measuring the size of
each block and the size of an interaction part. In general, a good decomposition solution has a low
complexity value, which is obtained due to smaller blocks and less interaction among them. In
contrast, a decomposition solution with larger blocks and larger interaction part will lead to a higher
complexity value. Further details of the matrix-based complexity metric (e.g., formulation and
justification) can be found in [13].

As a result, the complexity values of the decomposition solutions via different approaches are
tabulated in Table 1. The images of decomposition solutions (from two blocks to six blocks) obtained
from the revised two-phase method are shown in Figure 7. As seen from Table 1, the revised two-
phase method can generally yield the solutions that have a lower complexity value compared to the
solutions obtained by the previous approach. This justifies the utility of the revised two-phase
method.

Table 1. Comparison of decomposition solutions of the relief valve system

Previous Approach Revised Approach
# of interaction # of interaction

Solution Type Complexity value columns Complexity value columns
Two-block 0.6995 6 0.6502 5
Three-block 0.5799 9 0.4954 8
Four-block 0.5250 10 0.4912 10
Five-block 0.5208 12 0.4659 11
Six-block 0.4961 13 0.4497 13

¢) Four-block solution

e) ix—block solution

d) Five-block solution

Figure 7. Decomposition solutions of the relief valve system

3.2 Powertrain System

The powertrain system, adapted from [18], is another test problem to justify the utility of the revised
two-phase method. Figure 8a shows the rectangular matrix that captures the dependency relationships
among 119 parameters (represented in columns) and 87 functions (represented in rows) in the
powertrain system. Again, in this example, a two-phase decomposition method is used to divide the
original system into sub-systems for design purpose.

In dependency analysis, the revised tree construction algorithm is applied. The resulting diagonal
matrix is obtained and shown in Figure 8b. Given this diagonal matrix, the tree-based matrix
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partitioning is applied. For the decomposition criteria, the minimum block size is set as 4 columns,
and the maximum interaction size is 50 columns.

Accordingly, we generate the decomposition solutions starting with two blocks. Then we seek for a
new decomposition solution by incrementing the required number of blocks by one until we cannot get
a viable solution based on the given criteria. The comparison of complexity values and the images of
actual solutions are shown in Table 2 and Figure 9, respectively. Again, it has been observed that the
revised two-phase method can generally yield the solutions with lower complexity values.

a) Original matrix b) Diagonal matrix

Figure 8. Original matrix and diagonal matrix of the powertrain system

4 CLOSING REMARKS

In this paper, we have simplified the two-phase decomposition method via the approach of coupling
matrix concatenation. The results from the relief valve and powertrain examples support that the new
approach can provide better decomposition solutions comparatively based on the complexity measure.
In addition, the new approach leads to a faster decomposition process due to the simplified
dependency analysis and the effective tree-based partitioning analysis.

Directly related to the approach of coupling matrix concatenation, the next step of the research is to
investigate the relationship between the weight assignment for Equation (5) and the quality of final
decomposition solutions. Then, the corresponding decomposition method can be more flexible and
robust to generate solutions for different needs of systems decomposition. Also, software
development is to be pursued to implement the proposed decomposition method as a planning tool for
engineering design.

Table 2. Comparison of decomposition solutions of the powertrain system

Previous Approach Revised Approach
# of interaction # of interaction
Solution Type Complexity value columns Complexity value columns
Two-block 0.5349 5 0.5500 6
Three-block 0.4705 7 0.4985 14
Four-block 0.4100 15 0.4321 20
Five-block 0.4071 20 0.3710 24
Six-block 0.4018 27 0.3567 25
Seven-block 0.4405 34 0.4037 32
Eight-block N/A N/A 04117 35
Nine-block N/A N/A 0.4136 36
Ten-block N/A N/A 0.4236 38
Eleven-block N/A N/A 0.4466 41
Twelve-block N/A N/A 0.4531 43
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. a) Two-block solution -

d) Five-block solution

g) ight—block solution

j) Eleven-block solution

e) Six-block solution

h) Nine-block solution

k) Twelve-block solution

b) Three-block solution .

f) Seven-block solution

i) Ten-block solution

Figure 9. Decomposition solution of the powertrain system
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