
DESIGN PROCESSES 319

INTERNATIONAL DESIGN CONFERENCE - DESIGN 2010
Dubrovnik - Croatia, May 17 - 20, 2010.

RE-DESIGNING PD PROCESS ARCHITECTURE BY
TRANSFORMING TASK NETWORK MODELS INTO
SYSTEM DYNAMICS MODELS

H. N. Le, D. C. Wynn and P. J. Clarkson

Keywords: process architecture, model transformation, applied
signposting model (ASM), system dynamics

1. Introduction
Planning and management plays an essential part in product development (PD). One of the criteria to
judge the success of product development is its lead time. Thus, process managers are interested in
exploring means to reduce the lead time, while making adequate allowance for other objectives and
constraints, such as quality and resource availability. Project lead time can be influenced by
characteristics of the process architecture. For instance, consider the degree of task overlapping: on the
one hand, increasing overlapping can help to compress lead time; on the other hand, it is likely to
create additional rework which might outweigh the positive impact [Krishnan et al. 1997]. Another
example of the influence of process architecture is the frequency of design reviews. [Ha and Porteus
1995] show that it is more beneficial to conduct frequent reviews if parallel development can be
facilitated or if the probability of design flaws is high. They also point out that both infrequent and
too-frequent design reviews will result in negative impacts on the total development time.
Apart from process architecture-related influences, project lead time can be affected by management
policies and process-inherent feedback control [Lyneis and Ford 2007]. For instance, when the project
is behind schedule, process managers may take actions to get the project back on track. These actions
may include hiring additional workforce or scheduling additional work to be performed in overtime.
This can lead to an increase in work productivity. However, these actions entail unintended side
effects that create resistance to the policy, and the intended main effect may not ultimately occur as
expected [Lyneis and Ford 2007]. Due to the large number of factors which can influence process
performance, and the interactions between them, it is often difficult to determine what actions should
be taken to improve a complex process which can involve many hundreds of activities and actors.
Managers could therefore benefit from support to evaluate the impact of different ‘levers’ which they
can manipulate to improve process performance.
One way of achieving this is through simulation modelling, which facilitates the construction of a
virtual environment or ‘performance playground’, allowing managers to quickly see the overall impact
of different changes they could make. Various process modelling and simulation frameworks have
been proposed to support this, including task network models and System Dynamics (SD) models.
Each model type has its own characteristic strengths and weaknesses; for instance, task network
models such as PERT/DSM are suitable for studying the architecture of a specific process, while SD
models can help to evaluate the impact of policies upon process performance.
This paper presents initial results from research to combine the benefits of task network and SD
models. In particular, we introduce an approach to transforming a task network model of a design
process automatically into an SD model with similar behaviour. We show how this allows structural
characteristics of the specific process under consideration to be represented as continuous variables

320 DESIGN PROCESSES

whose influence on performance can be easily studied and, potentially, optimised. The remaining of
this paper proceeds as follows. Section 2 reviews task network and SD modelling frameworks, and
points out their view on processes. In Section 3 we outline an integrated simulation and analysis
approach which aims to incorporate some of the strengths from both frameworks. A method for model
transformation, which is the first part of the integrated framework, is then presented in Section 4.
Through an illustrative example, Section 5 demonstrates the feasibility and usefulness of our
approach. Section 6 indicates directions for future work and Section 7 concludes.

2. Models of different abstraction levels
As outlined in the introduction, factors influencing process behaviour, and thus product development
lead time, can emerge from different process context levels. Researchers have developed various
simulation modelling frameworks viewing the product development process from different abstraction
levels to investigate these factors. This section will discuss two such modelling frameworks: task
network models and SD models.

2.1 Task network simulation models

Task network models are flow-chart style representations aiming to capture precedence/dependency
relationships between tasks in a process. One such simulation framework, on which this paper is
based, is the Applied Signposting Model (ASM) (see Figure 1). The ASM provides a comprehensive
framework to capture different sources of uncertainties and constraints, as well as different task types,
which allow explicit modelling of route selection and iteration discovery. In the ASM modelling
framework the following elements are relevant to this paper [Wynn 2007]:

1. Precedence relationships represent the interaction between tasks and are the foundation of
many task network models. They specify the order of task execution and thereby constrain
which tasks can be executed at a given time.

2. Task types and definitions provide information on each specific task in the model. In the
ASM, there are three classes of tasks: (1) simple tasks, (2) compound tasks and (3) iteration
constructs. Compound tasks can have different user-defined output scenarios, determining
which tasks can be executed next. Iteration constructs are a specific form of compound task
and have exactly two output scenarios; they can be viewed as “backward branch” tasks,
ensuring all subsequent rework is executed correctly when design errors are discovered.

3. Task durations are essential to determine the process lead time. They may be specified as
probability density functions to express uncertainties in time requirement for task
completion.

4. Resource demands and pools provide a detailed representation of resource limitations by
allowing specific tasks to require specific resource types. These specifications co-determine
the order of tasks being executed during a simulation.

5. Task selection and resource allocation policies influence the course of the process by
specifically selecting tasks and assigning resources needed for their execution.

As a task-based network model, the ASM captures knowledge about how a process may be carried out
and offers a common base for visualisation and vocabularies for discussion. It can also form the basis
for process planning and management, helping to schedule activities and derive resource and time
requirements. The ASM has been applied to simulate processes both in an academic context and in
industry. For instance, [Kerley et al. 2008] describe how it has been used to support the integration of
life-cycle engineering activities into an existing PD process at a UK aerospace manufacturer.

2.2 System Dynamics models of PD processes

SD models of PD processes are mostly based on variants of a generic structure which captures flows of
activities between stocks that represent their current state of execution [Ford and Sterman 1998]. SD
ignores the task-specific details that are included in task network models. The main generic feature of
SD models in the product development literature is the rework cycle which was first introduced by
[Cooper 1980]. Subsequent modellers have developed variants of this rework cycle, such as [Ford and
Sterman 1998] (see Figure 1).

DESIGN PROCESSES 321

Figure 1. ASM model (left, [Bell et al. 2007]) and SD model (right, [Ford and Sterman 1998])

In overview, the rework cycle operates as follows. At the beginning, all tasks are in the stock “Tasks
not Completed”. They are processed through “Tasks Completed not Checked” and “Tasks Approved”
until they reach “Tasks Released”, where all tasks need to arrive to complete the process. However,
not all tasks are processed flawlessly and thus need to be reworked once these errors are discovered.
Yet rework can generate more rework and so on because errors in design are often detected some time
after their generation [Lyneis and Ford 2007]. Hence, when they are amended knock-on rework may
be revealed. These effects can lead to significant distortion of project schedules.
The rework cycle comprises various feedback loops which govern the rates at which activities flow
between stocks. For instance, an increase in workload and overtime working can have a negative
impact on the productivity of work force due to increased work intensity and limited resource. This
shows one way in which policy resistance may evolve as management policies are initiated to
influence the course of the project, i.e. to keep the project on track. Rework, hence, can have great
influences on process behaviour and development lead time.
According to [Ford and Sterman 1998], the relevant elements required for constructing a basic SD
model of an iterative PD process are:

1. Process structure includes development activities and phase dependencies. The three
process driving development activities are (1) completion, (2) quality assurance and (3)
change of tasks. The process concurrence relationship represents the degree of
interdependency between tasks within a phase by limiting the number of activities which are
available for execution at a progress state. Similarly, phase dependencies represent
information flow constraints between a cascade of overlapping development phases, where
each phase is modelled as a rework cycle which could otherwise be independently
parameterised.

2. Resources are characterised by their quantity, allocation and effectiveness. The quantity
parameter indicates the level of available resources, and the allocation policy regulates the
assignment of resources to each development activity. The effectiveness parameter describes
the rate at which tasks can be processed at each development activity.

3. Scope represents the original scope of work – described as the total number of tasks to be
completed – and its changes over time in response to schedule, cost and quality influences.
Rework represents the number of tasks which need rework due to error generation in the
development activities.

4. Targets are composed of deadline, quality goal and budget specifications. These
specifications are related to the overall project goals as well as phase-level targets and
influence the feedback loops in the model.

Through explicitly modelling the influence of rework and policies, such as how to respond to targets
and delays, the benefit of an SD model lies in its capability to capture the dynamics and complexity of
real systems (for example, software [Abdel-Hamid 1996] and mid-size chips [Ford & Sterman 1998]).
This modelling framework can improve high-level understanding of process behaviour and its impact
on process performance.

322 DESIGN PROCESSES

2.3 Summary

A summary and comparison of the essential characteristics of the two modelling approaches can be
found in Table 1. (summarising [Browning et al. 2005] and [Wynn 2007]).

Table 1. Essential characteristics of task network and SD models

 Task network models (e.g. ASM) SD rework cycle

Viewpoint on
Process

 A set of activities with pre-determined
precedence relationship

 A few major phases that create amounts
of work and rework for each other

Typical

Purposes

 Design process analysis

 Task sequencing

 Graphical process network visualisation

 Process behavioural analysis

 Iteration management policy definition

Key Variables/
Attributes

 Network structure

 Iteration (represented using decision
points and cyclic dependencies)

 Project environment

 Feedback loops

 Rework cycle

Strengths

 Graphical overview of process
architecture

 Capturing process architecture

 Process scheduling

 Process behaviour analysis

 Modelling influence of rework cycle and
dynamic feedback structure on process
behaviour

Weaknesses

 Overwhelming data volume

 Little traceability of process behaviour

 Difficult to study process concurrency
and overlapping degree

 Little reference to actual process
architecture

The strengths of task network models, such as ASM, and SD models, such as the rework cycle, lie in
their capability to investigate the influence of process architecture and high-level project issues,
respectively, on process behaviour. In the remainder of this paper we set out to show that combining
these two modelling approaches can yield new insights into factors influencing process performance.

3. An integrated simulation and analysis framework

3.1 Overview

By combining the two modelling approaches both high-level project issues of SD models and the
process details of task network models can be captured. Figure 2 outlines the main information flows
in the integrated simulation and analysis framework. In this framework a task network model, such as
an ASM model, serves as the starting point. This model is then transformed into the rework cycle of an
SD model. The process architecture – which is made up by elements of a process (i.e. tasks) and their
pattern of interaction – is the core of the transformation owing to the fact that: (1) process architecture,
although represented in different forms, is the main component of any process model; and (2) process
architecture is one of the main components of process planning. Once within the System Dynamics
modelling framework, the rework cycle can be complemented with SD-typical influencing variables
and feedback structures that make up the project environment. Management policies can then be
specified to complete the SD model. Together with the process architecture and management policies,
the project environment exerts strong influences on process behaviour. Modifying these factors and
analysing the resulting process behaviour will lead to a better understanding of how and to what extent
each factor contributes to that behaviour.

DESIGN PROCESSES 323

Project Environment

Rework Cycle Process Architecture Process Behaviour

Insights for Process
Improvement

System DynamicsTask Network Model

Model
transformation

Management Policies

Figure 2. Integrated simulation and analysis framework

3.2 Model transformation issues

In task-based network models and SD models the process architecture evolves from the precedence
and process concurrence relationships, respectively. The review of elements of both modelling
approaches (as introduced in [Ford and Sterman 1998, Wynn 2007]) reveals some common interfaces
which can facilitate the transformation of an ASM task network model into a high-level SD model.
However, when transforming an ASM model into a SD model, neither all of the model elements nor
their level of detail of each parameter can be considered. Table 2 summarises the matching of ASM
framework elements with the ones in SD, and points out issues regarding the level of detail.
The course of a simulation of a process modelled using ASM depends significantly on the precedence
relationships between tasks. These relationships describe interdependencies and interactions between
tasks in a model. In an ASM model tasks are distinct and, hence, may have interdependencies between
each other. The resulting precedence relationship regulates the availability of a task for execution
during the project and thus contributes to task schedule generation. In SD, tasks are not distinct and
only percentage process concurrence relationships can be used to describe the availability of tasks for
execution at a given progress state. Based on the task schedule of an ASM, the process concurrence
relationship of an SD model can be calculated by determining (1) the individual and (2) the cumulative
percentage contributions to the overall completion scope achieved in each time step (see Section 4.2).

4. Model transformation method
The model transformation used in this paper proceeds in the following steps (see Figure 3):

II. Process Concurrence

Relationship Calculation

- Basis of the calculation
- Deriving the process

III. Adding Auxiliary

Factor(s)

- Resource pool

I. Basis Establishment

- Stock and flow construct
- Resource requirement

Figure 3. Steps of model transformation

4.1 Basis establishment

The basic component of both ASM and SD frameworks are tasks. However, tasks as represented in
ASM and SD differ significantly from each other:

 Semantics of tasks in each model – Tasks in ASM have a specific description of their
contribution to the design and development of a product. On the other hand, tasks in SD are
small indistinguishable units of deliverables (hereafter: work packages for a clear
distinction), which contribute to the project completion in terms of percentage.

 Time and resource requirements – Tasks in ASM are distinct and, therefore, can have
individual specifications regarding time and resource requirements for execution. Work

324 DESIGN PROCESSES

packages in SD are fungible – they are modelled to be the same size in order to have the
same average duration, though they may be processed at different rates. There is also no
specification regarding resource requirements for individual work packages.

Table 2. Matching ASM and SD modelling elements

ASM
elements

SD
elements

Matching interpretation Level of detail issues

Precedence
relationships

Phase
dependencies

(Process
concurrence
relationship)

The precedence relationships
specify which tasks can be executed
at a given time and thus can serve as
the basis for calculating the phase
dependencies

The specific indication of what
tasks can be executed next in ASM
will resolve in percentages when
being transformed to the associated
element in SD

Task types
and definition

Development
activities

Unique tasks in ASM can be
transformed into work packages
which flow through different
development activities

The unique identification of each
task in ASM cannot be reflected in
the SD framework. The different
output scenarios of a compound
task cannot be reflected in SD

Project scope

The overall amount of effort in
ASM can be used for calculating the
original project scope of each phase
and the whole project

-

Rework

Information from compound tasks
and iteration constructs regarding
tasks to execute following an
unsatisfactory outcome can be used
to calculate potential rework scope

The probability of an output
scenario as well as potential
second-order impacts on other
parts of the process in an ASM
model cannot be reflected in SD

Task duration
Resource
effectiveness

The uncertainty in task duration in
ASM can be used to calculate the
average upper and lower limit of the
resource effectiveness in SD

The unique uncertainty in duration
of each task cannot be reflected in
the SD framework

Resource
demand and
pool

Resource
quantity

The resource demands of tasks in
ASM can be used to calculate the
total required effort which is an
indicator for resource demand

The distinct demands of different
resource types of each task in ASM
cannot be reflected in the SD
framework

Task selection
and resource
allocation
policies

Resource
allocation

No transformation possible

The distinct selection of and
resource allocation to tasks in ASM
cannot be reflected in SD frame-
work; only development activity
priority policy possible in SD

Taking these descriptive differences into account, the model transformation proceeds as follows:

1. Creation of stock and flow constructs – Tasks and their contributions to the overall
development in ASM are assigned to phases (the meaning of phase assignment is discussed
in more detail through the illustrative example in Section 5). Each phase is modelled as a
generic SD stock-and-flow construct, encompassing the rework cycle and SD modelling
elements. The basic SD stock-and-flow construct of a phase is adapted from [Cooper 1980].
However, the Cooper rework cycle is extended with the “Rework rate” flow for rework
processing since it is arguably justifiable to specify a different rate for rework compared to
the initial completion rate (see Figure 4). Once the stock-and-flow constructs are created,
they are individually parameterised as described below.

2. Resource requirement – The different types of resources in the ASM framework should be
reduced to one common type for simplification. Tasks that require more than one resource
unit should be converted into several tasks, equalling the original number of required

DESIGN PROCESSES 325

resource units but needing only one resource. These tasks are to be executed in parallel and
have the same input and output, and are of the same duration as the original tasks.

3. Determining task/work package duration – Tasks with different durations in ASM need to
be reduced to a common denominator since all work packages in SD require the same
average duration. The average duration to process a task in SD is set to one time unit. The
number of work packages in the SD model is calculated by setting it equal to the sum of
individual task durations in the ASM model, thus ASM tasks are broken down into small
units of work packages. This enables more precise calculation of the numerical process
concurrence relationship (see Section 4.2) and thereby allows the SD model to have a closer
imitation of the ASM model’s behaviour. Furthermore, it provides the basis for a simple way
to cope with tasks requiring more than one resource unit.

4.2 Determining the process concurrence relationships for each phase

The course of a modelled process in ASM depends significantly on the precedence relationship
between tasks, which evolves from information flows between them. In SD, work packages are not
distinct and, therefore, only a percentage process concurrence relationship can be modelled. This
relationship can be seen as a ‘look-up table’ which regulates the percentage of work packages
available for completion at a progress state.

1. Basis of the process concurrence relationship calculation – The order of tasks in ASM
reflects the precedence relationship among tasks and can, therefore, be used to calculate
process concurrence relationships in SD. Using this approach an SD model can imitate the
behaviour of an ASM model, in the case where there is no uncertainty included in the ASM
model that cannot be modelled in SD.

2. Deriving the process concurrence relationship – The precedence relationship of an ASM
model can be converted into an SD process concurrence relationship by using project
schedules (visualised as Gantt charts) resulting from simulations to determine (1) the
individual and (2) the cumulative percentage contributions to the overall completion scope
achieved in each time step. To illustrate, consider the ASM simulation output shown in
Figure 4. Assuming that the project starts on Monday 12 Oct and the overall completion
scope is 100%, then in this case the individual percentage contribution of Friday 16 Oct will
be 3%, as outlined in the solid box (see Figure 4) and the cumulative percentage to date will
be 7%. On Saturday 17 Oct another 3% of the total work packages will be available for
completion, as outlined in dotted box (see Figure 4). Considering the entire schedule of tasks
which results from ASM process simulation in this way allows the process concurrence
relationship – which equals the ASM project progress profile – in SD to be derived
automatically from an ASM simulation model.

ASM Project Progress Profile

0%

20%

40%

60%

80%

100%

1 6 11 16 21 26 31 36 41 46 51

Time

C
o

m
p

le
ti

o
n

Figure 4. Calculating the project progress profile from a Gantt chart

326 DESIGN PROCESSES

4.3 Adding auxiliary factor(s)

1. Resource pool – It is assumed that only “Progress rate” and “Rework rate” need resource in
order to process work packages; however, they may have different rates of processing work
packages. The SD framework has to adapt the available resource amount from the ASM
framework in an aggregated form. Yet the allocation policy from the ASM framework
cannot be used in the SD framework.

To summarise, by generating a simplified SD model from a potentially complex task network model,
the transformation method provides a way to study and explore the impact of management actions and
policy changes on the dynamic behaviour of the system. Once potential improvements have been
identified, by referring back to the original ASM model the modeller can consider in detail whether
these actions and changes are practical and how they could be achieved.

5. Case study
In this section, an existing process model is used to illustrate the model transformation approach and
highlight some of the benefits.

5.1 Building the model

The case study is based on an ASM process model originally created by researchers in the Cambridge
EDC to capture the engine development process at Rolls-Royce. To create the model, 32 interviews
were conducted with 27 designers, resulting in a task network of around 430 activities and the
dependencies between them (for more information please see [Wynn 2007]). For the purposes of this
paper, a more compact version of the model was created, containing only 177 tasks (see Figure 5) by
considering only the top three hierarchical levels of the model. It was further simplified such that tasks
had identical durations of one time unit. This kept the effort for the to-date manual transformation
within a reasonable limit.
The model transformation method outlined in Section 4 was applied and the calculated process
concurrence relationships were incorporated into: (1) a single-phase SD model construct as shown in
Figure 5; and (2) a four-sequential-phase SD model, where each phase contained the tasks from
consecutive sub-processes in the task network models. Vensim® was used to model and simulate the
SD model.

+ -

+

+

-

Figure 5. ASM basis model (left) and constructed SD (right)
Figure 6 depicts the project progress profile of both ASM and SD models, showing that the
transformed SD models deliver a similar course of progress to the original ASM model. This verifies
that the transformation is appropriate, especially for the case where the ASM model is divided into
four phases and is transformed into an SD model with four rework cycles. The profile generated
through ASM simulation (solid line) is nearly identical to the profile generated from the SD model
with four phases (dash-dot line in Figure 6). In this first simulation run no uncertainties (such as
duration uncertainty) or process constraints (such as resource limitations) are considered. By

DESIGN PROCESSES 327

transforming a model, the variety of different possible process schedules – and their impact on process
performance – of an ASM models are lost (see Table 2). However, the transformation facilitates
process behaviour related analyses which were not possible in ASM. Furthermore, the process
concurrence relationship itself can be modified to some extent in order to explore ways of improving
process lead time.

Project progress

0

5

10

15

20

1 9 17 25 33 41 49 57 65 73

Time (day)

W
or

k
pa

ck
a

ge

ASM simulation SD-1 phase SD-4 phases

Deviation from ASM progress profile

0

2

4

6

8

10

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Time (day)

W
o

rk
 p

ac
ka

ge

SD-1 phase SD-4 phases

Figure 6. Comparing the accuracy of model transformations

5.2 Analysis

To illustrate the potential of the transformed model to analyse the process in terms not possible using
the original task network, the one-phase SD model was modified to explore the effect of task
overlapping. In task network terms, this means that all tasks are allowed to start before the final
completion of their predecessors, with the assumption that this overlapping creates potential for
‘churn’ iteration as activities start based on early release of information from their predecessors,
necessitating rework within the downstream task. The main assumptions in the SD model which
represent this situation are:

1. The rework amount resulting from task overlapping is expressed by Equation 1:

rework% = c * (2overlap% – 1) (1)

Where rework%: average percentage of rework of total task duration
c: 0 ≤ c ≤ 1, downstream task sensitivity constant
overlap%: average percentage of task overlapping
An exponential function implies that the later the overlapping starts, the lower the
proportional rework amount will be. “2” is chosen as the base of the exponential because
rework% would equal 100% (i.e. one) for the case where c is one and overlap% is 100% (i.e.
one). A base of ”2” thus represents the upper limit where the rework percentage does not
exceed the overlap percentage and, therefore, overlapping may still be reasonable.

2. Tasks are executed in one continuous stream, i.e. there is no break and no release of resource
between the first attempt and rework.

3. The starting point of a downstream task depends on the degree of overlapping and the time
of completion of its upstream task (including rework time).

Furthermore, limited resource availability, which is specified to be 4 resource units, was assumed. As
illustrated in the SD model in Figure 5 (right), it is assumed that “Work intensity” has a negative
influence on the “Completion rate” (or work productivity). “Work intensity” is greater than “0” when
“Available work” is greater than “Resource pool”, meaning that there is more work available than the
limited resource can process. It is further assumed that a greater “Work intensity” influences
“Completion rate” more negatively. Based on this simple assumption set, simulation runs with the
degree of overlapping from 15% to 50% were executed for two scenarios: (1) No resource constraints;

328 DESIGN PROCESSES

and (2) with resource constraints and work intensity. The four-phase SD model was also modified to
explore the impact of phase overlapping. In ASM terms, this means that a number of activities within
a downstream phase are allowed to start before the upstream phase is completed. The assumptions are
identical to those for the single-phase model.

5.3 Results

The time-effort trade-offs for different overlapping degrees of both cases are compared to each other
in Figure 7, where the percentage numbers in the graph indicate the overlapping degrees. The most
obvious observation is that the resource constraint causes longer process duration. However, more
interesting is the observation that in a project setting with resource constraints a higher degree of
overlapping does not imply shorter process duration. In this example, process duration is reduced
through higher overlapping degree until the overlapping degree reaches 25%. From 25% onwards, a
higher overlapping degree brings about the opposite effect, i.e. it causes process duration to increase.
The curve of the simulation run with resource constraint and work intensity reveals some interesting
insights. It shows that a higher degree of task overlapping can lead to more compressed lead time.
However, this is only true until the amount of additional work – i.e. rework due to task overlapping –
reaches a critical extent where the time saving benefit is outweighed by the negative impact. This
negative impact results from decreasing productivity due to ever-increasing work intensity, which is
caused by higher task overlapping degrees. In reality, there are other factors that have an equally
relevant contribution to work productivity, either in a positive or negative way. For process managers,
it is essential to understand these influences and to be able to estimate this threshold value. It can help
them to derive robust project planning.
The result for the four-phase overlapping experiment is illustrated by the right-most curve in Figure 7
(45% and 50% were not considered). A similar trend to the middle curve can be observed, though the
values are not identical. This may be explained by the same influences described for the middle curve.

5.4 Summary

Despite the simplicity of this example analysis, the case study shows how the integrated simulation
and analysis framework can be useful for analysing multiple factors from different process abstraction
levels. The example has demonstrated how process architecture characteristics – task and phase
overlapping degrees – can influence process behaviour and, consequently, process lead time, and how
the transformation approach allows these influences to be studied by abstracting data from a detailed
model of a specific process. Furthermore, it has shown that environmental issues of the process can
interact with its architecture to cause nonlinear behaviour. Capturing influencing factors from two
different process abstraction levels in one single simulation and analysis framework can make use of
knowledge about individual influencing factors and to provide practitioners with a more holistic
exploration framework to evaluate process architecture and management policies.

15%

20%

30%

35% 40%

45%

50%

15%

20%
25%

30%

35% 40%

45%

50%

15% 20%

25%
30%

35%
40%

25%

Time-Effort Trade-off

180

185

190

195

200

205

210

50 55 60 65 70 75 80 85 90 95
Time (day)

E
ff

o
rt

 (
w

o
rk

)

1 phase - no resource 1 phase - resource 4 phases - resource

Figure 7. Comparing simulation results

DESIGN PROCESSES 329

6. Discussion and further work
Transforming the precedence relationships of a task network model of PD processes into the
concurrence and overlapping relationships of an SD model of the same process has provided a means
to analyse the influences of process architecture and management policy related influences on process
behaviour. This proposal can be realised without too much effort and complexity. Furthermore, this
way to transform a model does not compromise much on the traceability of the resulting model and
can be used to derive improvement suggestions regarding certain characteristics of the process
architecture.
However, some limitations are apparent. One of them is that only one of the many possible schedule
alternatives of an ASM model is used for generating the process concurrence relationship of its SD
counterpart. This may significantly limit the validity of the resulting process concurrence relationship.
Further work needs to be undertaken to understand the extent of this limitation. Additional limitations
of this transformation proposal are listed in Table 2 under “Level of detail issues”.
Apart from these limitations, the model transformation’s result itself has to be verified by measuring
the correctness of the simulated process behaviour resulting from the process concurrence relationship.
The deviation between the process progress profiles of the ASM and SD models can be used as a
parameter to evaluate the accuracy of the transformation result.
Further work will also explore the utility and practicality of the integrated simulation and analysis
framework. It is necessary to investigate how this framework can capture relevant influencing factors
and present them in a context that is useful for practitioners. In particular, factors related to iteration
are of interest since iteration is observed to be an essential part of process behaviour [Browning 1998].
In terms of practicality it will be explored how a computer tool may be created based on the generated
method to provide a practical means for modellers to explore the possibilities arising from model
transformation. Furthermore, the approach needs to incorporate uncertainties – in activity duration, for
instance – in order to explore the robustness of management actions, offering more insights for process
managers.

7. Conclusion
Both process architecture and high-level project issues can have significant influence on process
behaviour. Many simulation modelling frameworks have been developed to help investigate the
impact of different influences described on one or other of these levels of abstraction. In this paper, an
integrated simulation and analysis framework was proposed to combine the detailed process-
architecture view of task network models with the high-level perspective of system dynamics
simulation, and hence to incorporate the strengths from both modelling paradigms. An approach for
model transformation, which is the first part of the integrated framework, was then presented.
The value of this integrated simulation and analysis framework lies in its potential to provide analysis
opportunities to address new questions, or to investigate existing questions from a different angle. This
can result in a better understanding of influences on process behaviour, enhancing efficient process
management. In particular, it offers the opportunity to optimise management policies and process
architecture. Finally, the framework provides a way to simplify large and complex task-based network
models and to explore their underlying process behaviour.
The approach proposed in this paper differs from other integrated modelling frameworks, such as the
one proposed by [Martin and Raffo 2001], in several respects: (1) it does not integrate the two
modelling approaches in order to simulate the discrete activities within the context of an environment
described by an SD model; (2) it includes the rework cycle to demonstrate the effect of iteration on
process behaviour; (3) it provides a clear framework for analysing the influence of feedback control
and management policies on process behaviour; and (4) it allows the modelling of task overlapping.
However, there is much work remaining to further develop the proposed approach and to show how it
can be applied to address relevant problems in practice, as well as to evaluate its utility to support
design management. Further work in this research project will also include the development and
incorporation of a comprehensive framework of iteration causes and effects into a method, which will
be implemented as a tool in Cambridge Advanced Modeller (formerly P3).

330 DESIGN PROCESSES

Acknowledgement
This research is funded by the Engineering and Physical Sciences Research Council and the Cambridge
European Trust.

References
Abdel-Hamid, T.K. The Slippery Path to Productivity Improvement. Ieee Software. 13. 1996. 43-52.
Bell, C., Wynn, D.C., Dawes, W.N. and Clarkson, J.P. Using Meta-Data to Enhance Process Simulation and
Identify Improvements. Proceedings of the International Conference on Engineering Design. Paris, France,
2007.
Browning, T.R. Modeling and Analyzing Cost, Schedule, and Performance in Complex System Product
Development. PhD Thesis. Massachusetts Institute of Technology. 1998.
Browning, T.R., Fricke, E. and Negele, H. Key Concepts in Modeling Product development Processes. Systems
Engineering. 9. 2005. 104-28.
Cooper, K.G. Naval Ship Production: A Claim Settled and a Framework Built. The Institute of Management
Science. 10. 1980.
Ford, D.N. and Sterman, J.D. Dynamic Modeling of Product Development Processes. System Dynamics Review.
14. 1998. 31-68.
Ha, A.Y. and Porteus, E.L. Optimal Timing of Reviews in Concurrent Design for Manufacturability.
Management Science. 41. 1995. 1431-1447.
Kerley, W.P., Wynn, D.C., Eckert, C.M. and Clarkson, J.P. Using Simulation to Support Integration of Life-
Cycle Engineering Activities into an Existing Design Process: A Case Study. Proceedings of the 10th
International Design Conference - DESIGN 2008, Dubrovnik, Croatia, 2008.
Krishnan, V., Eppinger, S.D. and Whitney, D.E. A Model-Based Framework to Overlap Product Development
Activities. Management Science. 43. 1997. 437-451.
Lyneis, J.M. and Ford, D.N. System Dynamics Applied to Project Management: a Survey, Assessment, and
Directions for Future Research. System Dynamics Review. 23. 2007. 157-189.
Martin, R. and Raffo, D. Application of a Hybrid Process Simulation Model to a Software Development Project.
Journal of Systems and Software. 59. 2001. 237-246.
Wynn, D.C. Model-Based Approaches to Support Process Improvement in Complex Product Development.PhD
Thesis. Engineering Department. University of Cambridge. 2007.

Hoang Nam Le
University of Cambridge, Department of Engineering
Trumpington Street, Cambridge, CB2 1PZ, UK
Email: hnl24@cam.ac.uk
URL: http://www-edc.eng.cam.ac.uk

