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1. Introduction 
Planning and management plays an essential part in product development (PD). One of the criteria to 
judge the success of product development is its lead time. Thus, process managers are interested in 
exploring means to reduce the lead time, while making adequate allowance for other objectives and 
constraints, such as quality and resource availability. Project lead time can be influenced by 
characteristics of the process architecture. For instance, consider the degree of task overlapping: on the 
one hand, increasing overlapping can help to compress lead time; on the other hand, it is likely to 
create additional rework which might outweigh the positive impact [Krishnan et al. 1997]. Another 
example of the influence of process architecture is the frequency of design reviews. [Ha and Porteus 
1995] show that it is more beneficial to conduct frequent reviews if parallel development can be 
facilitated or if the probability of design flaws is high. They also point out that both infrequent and 
too-frequent design reviews will result in negative impacts on the total development time. 
Apart from process architecture-related influences, project lead time can be affected by management 
policies and process-inherent feedback control [Lyneis and Ford 2007]. For instance, when the project 
is behind schedule, process managers may take actions to get the project back on track. These actions 
may include hiring additional workforce or scheduling additional work to be performed in overtime. 
This can lead to an increase in work productivity. However, these actions entail unintended side 
effects that create resistance to the policy, and the intended main effect may not ultimately occur as 
expected [Lyneis and Ford 2007]. Due to the large number of factors which can influence process 
performance, and the interactions between them, it is often difficult to determine what actions should 
be taken to improve a complex process which can involve many hundreds of activities and actors. 
Managers could therefore benefit from support to evaluate the impact of different ‘levers’ which they 
can manipulate to improve process performance.  
One way of achieving this is through simulation modelling, which facilitates the construction of a 
virtual environment or ‘performance playground’, allowing managers to quickly see the overall impact 
of different changes they could make. Various process modelling and simulation frameworks have 
been proposed to support this, including task network models and System Dynamics (SD) models. 
Each model type has its own characteristic strengths and weaknesses; for instance, task network 
models such as PERT/DSM are suitable for studying the architecture of a specific process, while SD 
models can help to evaluate the impact of policies upon process performance.  
This paper presents initial results from research to combine the benefits of task network and SD 
models. In particular, we introduce an approach to transforming a task network model of a design 
process automatically into an SD model with similar behaviour. We show how this allows structural 
characteristics of the specific process under consideration to be represented as continuous variables 
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whose influence on performance can be easily studied and, potentially, optimised. The remaining of 
this paper proceeds as follows. Section 2 reviews task network and SD modelling frameworks, and 
points out their view on processes. In Section 3 we outline an integrated simulation and analysis 
approach which aims to incorporate some of the strengths from both frameworks. A method for model 
transformation, which is the first part of the integrated framework, is then presented in Section 4. 
Through an illustrative example, Section 5 demonstrates the feasibility and usefulness of our 
approach. Section 6 indicates directions for future work and Section 7 concludes.  

2. Models of different abstraction levels 
As outlined in the introduction, factors influencing process behaviour, and thus product development 
lead time, can emerge from different process context levels. Researchers have developed various 
simulation modelling frameworks viewing the product development process from different abstraction 
levels to investigate these factors. This section will discuss two such modelling frameworks: task 
network models and SD models.  

2.1 Task network simulation models 

Task network models are flow-chart style representations aiming to capture precedence/dependency 
relationships between tasks in a process. One such simulation framework, on which this paper is 
based, is the Applied Signposting Model (ASM) (see Figure 1). The ASM provides a comprehensive 
framework to capture different sources of uncertainties and constraints, as well as different task types, 
which allow explicit modelling of route selection and iteration discovery. In the ASM modelling 
framework the following elements are relevant to this paper [Wynn 2007]: 

1. Precedence relationships represent the interaction between tasks and are the foundation of 
many task network models. They specify the order of task execution and thereby constrain 
which tasks can be executed at a given time. 

2. Task types and definitions provide information on each specific task in the model. In the 
ASM, there are three classes of tasks: (1) simple tasks, (2) compound tasks and (3) iteration 
constructs. Compound tasks can have different user-defined output scenarios, determining 
which tasks can be executed next. Iteration constructs are a specific form of compound task 
and have exactly two output scenarios; they can be viewed as “backward branch” tasks, 
ensuring all subsequent rework is executed correctly when design errors are discovered.  

3. Task durations are essential to determine the process lead time. They may be specified as 
probability density functions to express uncertainties in time requirement for task 
completion. 

4. Resource demands and pools provide a detailed representation of resource limitations by 
allowing specific tasks to require specific resource types. These specifications co-determine 
the order of tasks being executed during a simulation. 

5. Task selection and resource allocation policies influence the course of the process by 
specifically selecting tasks and assigning resources needed for their execution. 

As a task-based network model, the ASM captures knowledge about how a process may be carried out 
and offers a common base for visualisation and vocabularies for discussion. It can also form the basis 
for process planning and management, helping to schedule activities and derive resource and time 
requirements. The ASM has been applied to simulate processes both in an academic context and in 
industry. For instance, [Kerley et al. 2008] describe how it has been used to support the integration of 
life-cycle engineering activities into an existing PD process at a UK aerospace manufacturer. 

2.2 System Dynamics models of PD processes 

SD models of PD processes are mostly based on variants of a generic structure which captures flows of 
activities  between stocks that represent their current state of execution [Ford and Sterman 1998]. SD 
ignores the task-specific details that are included in task network models. The main generic feature of 
SD models in the product development literature is the rework cycle which was first introduced by 
[Cooper 1980]. Subsequent modellers have developed variants of this rework cycle, such as [Ford and 
Sterman 1998] (see Figure 1).  
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Figure 1. ASM model (left, [Bell et al. 2007]) and SD model (right, [Ford and Sterman 1998]) 

In overview, the rework cycle operates as follows. At the beginning, all tasks are in the stock “Tasks 
not Completed”. They are processed through “Tasks Completed not Checked” and “Tasks Approved” 
until they reach “Tasks Released”, where all tasks need to arrive to complete the process. However, 
not all tasks are processed flawlessly and thus need to be reworked once these errors are discovered. 
Yet rework can generate more rework and so on because errors in design are often detected some time  
after their generation [Lyneis and Ford 2007]. Hence, when they are amended knock-on rework may 
be revealed. These effects can lead to significant distortion of project schedules. 
The rework cycle comprises various feedback loops which govern the rates at which activities flow 
between stocks. For instance, an increase in workload and overtime working can have a negative 
impact on the productivity of work force due to increased work intensity and limited resource. This 
shows one way in which policy resistance may evolve as management policies are initiated to 
influence the course of the project, i.e. to keep the project on track. Rework, hence, can have great 
influences on process behaviour and development lead time.  
According to [Ford and Sterman 1998], the relevant elements required for constructing a basic SD 
model of an iterative PD process are: 

1. Process structure includes development activities and phase dependencies. The three 
process driving development activities are (1) completion, (2) quality assurance and (3) 
change of tasks. The process concurrence relationship represents the degree of 
interdependency between tasks within a phase by limiting the number of activities which are 
available for execution at a progress state. Similarly, phase dependencies represent 
information flow constraints between a cascade of overlapping development phases, where 
each phase is modelled as a rework cycle which could otherwise be independently 
parameterised. 

2. Resources are characterised by their quantity, allocation and effectiveness. The quantity 
parameter indicates the level of available resources, and the allocation policy regulates the 
assignment of resources to each development activity. The effectiveness parameter describes 
the rate at which tasks can be processed at each development activity. 

3. Scope represents the original scope of work – described as the total number of tasks to be 
completed – and its changes over time in response to schedule, cost and quality influences. 
Rework represents the number of tasks which need rework due to error generation in the 
development activities.  

4. Targets are composed of deadline, quality goal and budget specifications. These 
specifications are related to the overall project goals as well as phase-level targets and 
influence the feedback loops in the model. 

Through explicitly modelling the influence of rework and policies, such as how to respond to targets 
and delays, the benefit of an SD model lies in its capability to capture the dynamics and complexity of 
real systems (for example, software [Abdel-Hamid 1996] and mid-size chips [Ford & Sterman 1998]). 
This modelling framework can improve high-level understanding of process behaviour and its impact 
on process performance. 
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2.3 Summary 

A summary and comparison of the essential characteristics of the two modelling approaches can be 
found in Table 1. (summarising [Browning et al. 2005] and [Wynn 2007]). 

Table 1. Essential characteristics of task network and SD models 

  Task network models (e.g. ASM) SD rework cycle 

Viewpoint on 
Process 

 A set of activities with pre-determined 
precedence relationship 

 A few major phases that create amounts 
of work and rework for each other 

Typical  

Purposes 

 Design process analysis 

 Task sequencing 

 Graphical process network visualisation 

 Process behavioural analysis 

 Iteration management policy definition 

Key Variables/ 
Attributes 

 Network structure 

 Iteration (represented using decision 
points and cyclic dependencies) 

 Project environment 

 Feedback loops 

 Rework cycle 

Strengths 

 Graphical overview of process 
architecture 

 Capturing process architecture 

 Process scheduling 

 Process behaviour analysis 

 Modelling influence of rework cycle and 
dynamic feedback structure on process 
behaviour 

Weaknesses 

 Overwhelming data volume 

 Little traceability of process behaviour 

 Difficult to study process concurrency 
and overlapping degree 

 Little reference to actual process 
architecture  

 
The strengths of task network models, such as ASM, and SD models, such as the rework cycle, lie in 
their capability to investigate the influence of process architecture and high-level project issues, 
respectively, on process behaviour. In the remainder of this paper we set out to show that combining 
these two modelling approaches can yield new insights into factors influencing process performance. 

3. An integrated simulation and analysis framework 

3.1 Overview 

By combining the two modelling approaches both high-level project issues of SD models and the 
process details of task network models can be captured. Figure 2 outlines the main information flows 
in the integrated simulation and analysis framework. In this framework a task network model, such as 
an ASM model, serves as the starting point. This model is then transformed into the rework cycle of an 
SD model. The process architecture – which is made up by elements of a process (i.e. tasks) and their 
pattern of interaction – is the core of the transformation owing to the fact that: (1) process architecture, 
although represented in different forms, is the main component of any process model; and (2) process 
architecture is one of the main components of process planning. Once within the System Dynamics 
modelling framework, the rework cycle can be complemented with SD-typical influencing variables 
and feedback structures that make up the project environment. Management policies can then be 
specified to complete the SD model. Together with the process architecture and management policies, 
the project environment exerts strong influences on process behaviour. Modifying these factors and 
analysing the resulting process behaviour will lead to a better understanding of how and to what extent 
each factor contributes to that behaviour. 
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Figure 2. Integrated simulation and analysis framework 

3.2 Model transformation issues 

In task-based network models and SD models the process architecture evolves from the precedence 
and process concurrence relationships, respectively. The review of elements of both modelling 
approaches (as introduced in [Ford and Sterman 1998, Wynn 2007]) reveals some common interfaces 
which can facilitate the transformation of an ASM task network model into a high-level SD model. 
However, when transforming an ASM model into a SD model, neither all of the model elements nor 
their level of detail of each parameter can be considered. Table 2 summarises the matching of ASM 
framework elements with the ones in SD, and points out issues regarding the level of detail. 
The course of a simulation of a process modelled using ASM depends significantly on the precedence 
relationships between tasks. These relationships describe interdependencies and interactions between 
tasks in a model. In an ASM model tasks are distinct and, hence, may have interdependencies between 
each other. The resulting precedence relationship regulates the availability of a task for execution 
during the project and thus contributes to task schedule generation. In SD, tasks are not distinct and 
only percentage process concurrence relationships can be used to describe the availability of tasks for 
execution at a given progress state. Based on the task schedule of an ASM, the process concurrence 
relationship of an SD model can be calculated by determining (1) the individual and (2) the cumulative 
percentage contributions to the overall completion scope achieved in each time step (see Section 4.2). 

4. Model transformation method 
The model transformation used in this paper proceeds in the following steps (see Figure 3): 

 
II. Process Concurrence 

Relationship Calculation

-  Basis of the calculation 
-  Deriving the process  

III. Adding Auxiliary 

Factor(s) 

- Resource pool 

I. Basis Establishment 

-  Stock and flow construct 
-  Resource requirement  

 
Figure 3. Steps of model transformation 

4.1 Basis establishment  

The basic component of both ASM and SD frameworks are tasks. However, tasks as represented in 
ASM and SD differ significantly from each other:  

 Semantics of tasks in each model – Tasks in ASM have a specific description of their 
contribution to the design and development of a product. On the other hand, tasks in SD are 
small indistinguishable units of deliverables (hereafter: work packages for a clear 
distinction), which contribute to the project completion in terms of percentage. 

 Time and resource requirements – Tasks in ASM are distinct and, therefore, can have 
individual specifications regarding time and resource requirements for execution. Work 
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packages in SD are fungible – they are modelled to be the same size in order to have the 
same average duration, though they may be processed at different rates. There is also no 
specification regarding resource requirements for individual work packages. 

Table 2. Matching ASM and SD modelling elements 

ASM 
elements 

SD 
elements 

Matching interpretation Level of detail issues 

Precedence 
relationships 

Phase 
dependencies 

(Process 
concurrence 
relationship) 

The precedence relationships 
specify which tasks can be executed 
at a given time and thus can serve as 
the basis for calculating the phase 
dependencies 

The specific indication of what 
tasks can be executed next in ASM 
will resolve in percentages when 
being transformed to the associated 
element in SD 

Task types 
and definition 

Development 
activities 

Unique tasks in ASM can be 
transformed into work packages 
which flow through different 
development activities 

The unique identification of each 
task in ASM cannot be reflected in 
the SD framework. The different 
output scenarios of a compound 
task cannot be reflected in SD  

Project scope 

The overall amount of effort in 
ASM can be used for calculating the 
original project scope of each phase 
and the whole project 

- 

Rework 

Information from compound tasks 
and iteration constructs regarding 
tasks to execute following an 
unsatisfactory outcome can be used 
to calculate potential rework scope 

The probability of an output 
scenario as well as potential 
second-order impacts on other 
parts of the process in an ASM 
model cannot be reflected in SD 

Task duration 
Resource 
effectiveness 

The uncertainty in task duration in 
ASM can be used to calculate the 
average upper and lower limit of the 
resource effectiveness in SD 

The unique uncertainty in duration 
of each task cannot be reflected in 
the SD framework 

Resource 
demand and 
pool 

Resource 
quantity 

The resource demands of tasks in 
ASM can be used to calculate the 
total required effort which is an 
indicator for resource demand  

The distinct demands of different 
resource types of each task in ASM 
cannot be reflected in the SD 
framework 

Task selection 
and resource 
allocation 
policies 

Resource 
allocation 

No transformation possible  

The distinct selection of and 
resource allocation to tasks in ASM 
cannot be reflected in SD frame- 
work; only development activity 
priority policy possible in SD 

 
Taking these descriptive differences into account, the model transformation proceeds as follows: 

1. Creation of stock and flow constructs – Tasks and their contributions to the overall 
development in ASM are assigned to phases (the meaning of phase assignment is discussed 
in more detail through the illustrative example in Section 5). Each phase is modelled as a 
generic SD stock-and-flow construct, encompassing the rework cycle and SD modelling 
elements. The basic SD stock-and-flow construct of a phase is adapted from [Cooper 1980]. 
However, the Cooper rework cycle is extended with the “Rework rate” flow for rework 
processing since it is arguably justifiable to specify a different rate for rework compared to 
the initial completion rate (see Figure 4).  Once the stock-and-flow constructs are created, 
they are individually parameterised as described below. 

2. Resource requirement – The different types of resources in the ASM framework should be 
reduced to one common type for simplification. Tasks that require more than one resource 
unit should be converted into several tasks, equalling the original number of required 
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resource units but needing only one resource. These tasks are to be executed in parallel and 
have the same input and output, and are of the same duration as the original tasks. 

3. Determining task/work package duration – Tasks with different durations in ASM need to 
be reduced to a common denominator since all work packages in SD require the same 
average duration. The average duration to process a task in SD is set to one time unit. The 
number of work packages in the SD model is calculated by setting it equal to the sum of 
individual task durations in the ASM model, thus ASM tasks are broken down into small 
units of work packages. This enables more precise calculation of the numerical process 
concurrence relationship (see Section 4.2) and thereby allows the SD model to have a closer 
imitation of the ASM model’s behaviour. Furthermore, it provides the basis for a simple way 
to cope with tasks requiring more than one resource unit.  

4.2 Determining the process concurrence relationships for each phase 

The course of a modelled process in ASM depends significantly on the precedence relationship 
between tasks, which evolves from information flows between them. In SD, work packages are not 
distinct and, therefore, only a percentage process concurrence relationship can be modelled. This 
relationship can be seen as a ‘look-up table’ which regulates the percentage of work packages 
available for completion at a progress state. 

1. Basis of the process concurrence relationship calculation – The order of tasks in ASM 
reflects the precedence relationship among tasks and can, therefore, be used to calculate 
process concurrence relationships in SD. Using this approach an SD model can imitate the 
behaviour of an ASM model, in the case where there is no uncertainty included in the ASM 
model that cannot be modelled in SD. 

2. Deriving the process concurrence relationship – The precedence relationship of an ASM 
model can be converted into an SD process concurrence relationship by using project 
schedules (visualised as Gantt charts) resulting from simulations to determine (1) the 
individual and (2) the cumulative percentage contributions to the overall completion scope 
achieved in each time step. To illustrate, consider the ASM simulation output shown in 
Figure 4. Assuming that the project starts on Monday 12 Oct and the overall completion 
scope is 100%, then in this case the individual percentage contribution of Friday 16 Oct will 
be 3%, as outlined in the solid box (see Figure 4) and the cumulative percentage to date will 
be 7%. On Saturday 17 Oct another 3% of the total work packages will be available for 
completion, as outlined in dotted box (see Figure 4). Considering the entire schedule of tasks 
which results from ASM process simulation in this way allows the process concurrence 
relationship – which equals the ASM project progress profile – in SD to be derived 
automatically from an ASM simulation model. 
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Figure 4. Calculating the project progress profile from a Gantt chart 
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4.3 Adding auxiliary factor(s)  

1. Resource pool – It is assumed that only “Progress rate” and “Rework rate” need resource in 
order to process work packages; however, they may have different rates of processing work 
packages. The SD framework has to adapt the available resource amount from the ASM 
framework in an aggregated form. Yet the allocation policy from the ASM framework 
cannot be used in the SD framework. 

To summarise, by generating a simplified SD model from a potentially complex task network model, 
the transformation method provides a way to study and explore the impact of management actions and 
policy changes on the dynamic behaviour of the system. Once potential improvements have been 
identified, by referring back to the original ASM model the modeller can consider in detail whether 
these actions and changes are practical and how they could be achieved. 

5. Case study 
In this section, an existing process model is used to illustrate the model transformation approach and 
highlight some of the benefits.  

5.1 Building the model 

The case study is based on an ASM process model originally created by researchers in the Cambridge 
EDC to capture the engine development process at Rolls-Royce. To create the model, 32 interviews 
were conducted with 27 designers, resulting in a task network of around 430 activities and the 
dependencies between them (for more information please see [Wynn 2007]). For the purposes of this 
paper, a more compact version of the model was created, containing only 177 tasks (see Figure 5) by 
considering only the top three hierarchical levels of the model. It was further simplified such that tasks 
had identical durations of one time unit. This kept the effort for the to-date manual transformation 
within a reasonable limit. 
The model transformation method outlined in Section 4 was applied and the calculated process 
concurrence relationships were incorporated into: (1) a single-phase SD model construct as shown in 
Figure 5; and (2) a four-sequential-phase SD model, where each phase contained the tasks from 
consecutive sub-processes in the task network models. Vensim® was used to model and simulate the 
SD model. 

+ -

+

+

-

Figure 5. ASM basis model (left) and constructed SD (right) 
Figure 6 depicts the project progress profile of both ASM and SD models, showing that the 
transformed SD models deliver a similar course of progress to the original ASM model. This verifies 
that the transformation is appropriate, especially for the case where the ASM model is divided into 
four phases and is transformed into an SD model with four rework cycles. The profile generated 
through ASM simulation (solid line) is nearly identical to the profile generated from the SD model 
with four phases (dash-dot line in Figure 6). In this first simulation run no uncertainties (such as 
duration uncertainty) or process constraints (such as resource limitations) are considered. By 
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transforming a model, the variety of different possible process schedules – and their impact on process 
performance – of an ASM models are lost (see Table 2). However, the transformation facilitates 
process behaviour related analyses which were not possible in ASM. Furthermore, the process 
concurrence relationship itself can be modified to some extent in order to explore ways of improving 
process lead time. 
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Figure 6. Comparing the accuracy of model transformations 

5.2 Analysis 

To illustrate the potential of the transformed model to analyse the process in terms not possible using 
the original task network, the one-phase SD model was modified to explore the effect of task 
overlapping. In task network terms, this means that all tasks are allowed to start before the final 
completion of their predecessors, with the assumption that this overlapping creates potential for 
‘churn’ iteration as activities start based on early release of information from their predecessors, 
necessitating rework within the downstream task. The main assumptions in the SD model which 
represent this situation are: 

1. The rework amount resulting from task overlapping is expressed by Equation 1:  

rework% = c * (2overlap% – 1)                                                                             (1) 

Where rework%:  average percentage of rework of total task duration 
c:  0 ≤ c ≤ 1, downstream task sensitivity constant  
overlap%:  average percentage of task overlapping   
An exponential function implies that the later the overlapping starts, the lower the 
proportional rework amount will be. “2” is chosen as the base of the exponential because 
rework% would equal 100% (i.e. one) for the case where c is one and overlap% is 100% (i.e. 
one). A base of ”2” thus represents the upper limit where the rework percentage does not 
exceed the overlap percentage and, therefore, overlapping may still be reasonable. 

2. Tasks are executed in one continuous stream, i.e. there is no break and no release of resource 
between the first attempt and rework. 

3. The starting point of a downstream task depends on the degree of overlapping and the time 
of completion of its upstream task (including rework time). 

Furthermore, limited resource availability, which is specified to be 4 resource units, was assumed. As 
illustrated in the SD model in Figure 5 (right), it is assumed that “Work intensity” has a negative 
influence on the “Completion rate” (or work productivity). “Work intensity” is greater than “0” when 
“Available work” is greater than “Resource pool”, meaning that there is more work available than the 
limited resource can process. It is further assumed that a greater “Work intensity” influences 
“Completion rate” more negatively. Based on this simple assumption set, simulation runs with the 
degree of overlapping from 15% to 50% were executed for two scenarios: (1) No resource constraints; 
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and (2) with resource constraints and work intensity. The four-phase SD model was also modified to 
explore the impact of phase overlapping. In ASM terms, this means that a number of activities within 
a downstream phase are allowed to start before the upstream phase is completed. The assumptions are 
identical to those for the single-phase model. 

5.3 Results 

The time-effort trade-offs for different overlapping degrees of both cases are compared to each other 
in Figure 7, where the percentage numbers in the graph indicate the overlapping degrees. The most 
obvious observation is that the resource constraint causes longer process duration. However, more 
interesting is the observation that in a project setting with resource constraints a higher degree of 
overlapping does not imply shorter process duration. In this example, process duration is reduced 
through higher overlapping degree until the overlapping degree reaches 25%. From 25% onwards, a 
higher overlapping degree brings about the opposite effect, i.e. it causes process duration to increase. 
The curve of the simulation run with resource constraint and work intensity reveals some interesting 
insights. It shows that a higher degree of task overlapping can lead to more compressed lead time. 
However, this is only true until the amount of additional work – i.e. rework due to task overlapping – 
reaches a critical extent where the time saving benefit is outweighed by the negative impact. This 
negative impact results from decreasing productivity due to ever-increasing work intensity, which is 
caused by higher task overlapping degrees. In reality, there are other factors that have an equally 
relevant contribution to work productivity, either in a positive or negative way. For process managers, 
it is essential to understand these influences and to be able to estimate this threshold value. It can help 
them to derive robust project planning. 
The result for the four-phase overlapping experiment is illustrated by the right-most curve in Figure 7 
(45% and 50% were not considered). A similar trend to the middle curve can be observed, though the 
values are not identical. This may be explained by the same influences described for the middle curve. 

5.4 Summary 

Despite the simplicity of this example analysis, the case study shows how the integrated simulation 
and analysis framework can be useful for analysing multiple factors from different process abstraction 
levels. The example has demonstrated how process architecture characteristics – task and phase 
overlapping degrees – can influence process behaviour and, consequently, process lead time, and how 
the transformation approach allows these influences to be studied by abstracting data from a detailed 
model of a specific process. Furthermore, it has shown that environmental issues of the process can 
interact with its architecture to cause nonlinear behaviour. Capturing influencing factors from two 
different process abstraction levels in one single simulation and analysis framework can make use of 
knowledge about individual influencing factors and to provide practitioners with a more holistic 
exploration framework to evaluate process architecture and management policies.  
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Figure 7. Comparing simulation results 
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6. Discussion and further work 
Transforming the precedence relationships of a task network model of PD processes into the 
concurrence and overlapping relationships of an SD model of the same process has provided a means 
to analyse the influences of process architecture and management policy related influences on process 
behaviour. This proposal can be realised without too much effort and complexity. Furthermore, this 
way to transform a model does not compromise much on the traceability of the resulting model and 
can be used to derive improvement suggestions regarding certain characteristics of the process 
architecture. 
However, some limitations are apparent. One of them is that only one of the many possible schedule 
alternatives of an ASM model is used for generating the process concurrence relationship of its SD 
counterpart. This may significantly limit the validity of the resulting process concurrence relationship. 
Further work needs to be undertaken to understand the extent of this limitation. Additional limitations 
of this transformation proposal are listed in Table 2 under “Level of detail issues”.  
Apart from these limitations, the model transformation’s result itself has to be verified by measuring 
the correctness of the simulated process behaviour resulting from the process concurrence relationship. 
The deviation between the process progress profiles of the ASM and SD models can be used as a 
parameter to evaluate the accuracy of the transformation result. 
Further work will also explore the utility and practicality of the integrated simulation and analysis 
framework. It is necessary to investigate how this framework can capture relevant influencing factors 
and present them in a context that is useful for practitioners. In particular, factors related to iteration 
are of interest since iteration is observed to be an essential part of process behaviour [Browning 1998]. 
In terms of practicality it will be explored how a computer tool may be created based on the generated 
method to provide a practical means for modellers to explore the possibilities arising from model 
transformation. Furthermore, the approach needs to incorporate uncertainties – in activity duration, for 
instance – in order to explore the robustness of management actions, offering more insights for process 
managers. 

7. Conclusion 
Both process architecture and high-level project issues can have significant influence on process 
behaviour. Many simulation modelling frameworks have been developed to help investigate the 
impact of different influences described on one or other of these levels of abstraction. In this paper, an 
integrated simulation and analysis framework was proposed to combine the detailed process-
architecture view of task network models with the high-level perspective of system dynamics 
simulation, and hence to incorporate the strengths from both modelling paradigms. An approach for 
model transformation, which is the first part of the integrated framework, was then presented.  
The value of this integrated simulation and analysis framework lies in its potential to provide analysis 
opportunities to address new questions, or to investigate existing questions from a different angle. This 
can result in a better understanding of influences on process behaviour, enhancing efficient process 
management. In particular, it offers the opportunity to optimise management policies and process 
architecture. Finally, the framework provides a way to simplify large and complex task-based network 
models and to explore their underlying process behaviour.  
The approach proposed in this paper differs from other integrated modelling frameworks, such as the 
one proposed by [Martin and Raffo 2001], in several respects: (1) it does not integrate the two 
modelling approaches in order to simulate the discrete activities within the context of an environment 
described by an SD model; (2) it includes the rework cycle to demonstrate the effect of iteration on 
process behaviour; (3) it provides a clear framework for analysing the influence of feedback control 
and management policies on process behaviour; and (4) it allows the modelling of task overlapping. 
However, there is much work remaining to further develop the proposed approach and to show how it 
can be applied to address relevant problems in practice, as well as to evaluate its utility to support 
design management. Further work in this research project will also include the development and 
incorporation of a comprehensive framework of iteration causes and effects into a method, which will 
be implemented as a tool in Cambridge Advanced Modeller (formerly P3). 
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