
12TH INTERNATIONAL DEPENDENCY AND STRUCTURE MODELLING CONFERENCE, DSM’10
22 – 23 JULY 2010, CAMBRIDGE, UK

A FRAMEWORK FOR EVALUATING PRODUCT
ARCHITECTURE OF AUTOMATION PRODUCTION
FACILITIES
Maximilian P. Kissel1, Katharina G. M. Eben1, Steven Braun2, Jakob Schmidt-Colinet2,
Martin Obermeier2, Udo Lindemann1 and Birgit Vogel-Heuser2
1Institute of Product Development, Technische Universität München
2Chair of Information Technology in Mechanical Engineering, Technische Universität
München

Keywords: MDM, evaluation, automation systems, interdisciplinary product development

1 SILO MENTALITY IN AUTOMATION SYSTEMS DEVELOPMENT
Some interdisciplinary products are still designed with blinders. To develop automation systems,
teams of each involved discipline can work on their particular subsystem (software, controller,
electronic and mechanic hardware) independently by defining interfaces and requirements among the
individual parts of the system. When it comes to a re-configuration of an existing subsystem, the
impact on the other subsystems is ambiguous. Developers are not aware of the impact of their
development decisions beyond the interfaces regarding modularization, changes in product
architecture or re-shape of system borders. In this paper, we provide a framework to evaluate the
impact of a re-modularization of a subsystem on the total system and give implications for further
steps towards a holistic evaluation system for automation system architecture.

2 THE IMPACT OF MODULARIZATION OF SOFTWARE CODE
At the beginning of this paper, to illustrate the need for an evaluation framework, we want to present
an example of a potential re-modularization scenario in the field of automation from an information
technology perspective. An imminent scenario of a momentous change in one subsystem of an
automation system is the introduction of object-oriented programming languages in automation
industries. This change will have a noticeable impact on the IT itself and, furthermore, on the work of
other disciplines involved. The application of object-oriented programming concepts to real-time
automation systems is due to the fact that rising requirements in quality and security of automation
production facilities cause an inflation of solicited lines of control code and therefore an increase of
the complexity of the overall code. Programs with more than 200 thousand lines of code are common,
most notably, to address all eventualities of error resolution. To cope with the rising complexity of the
software of automation systems, a trend towards object-oriented software modularization is
perceivable (Katzke, 2009; Katzke and Vogel-Heuser, 2009). Currently, the norm for controller
programming (DIN EN 61131-3) is being complemented with object-oriented constructs.
Even if the idea of re-organizing the source code seems to be reasonable and smart in order to reduce
the complexity of the software, the impact of this measure on hardware components and,
consequently, on the total system remains yet neglected. The replacement of procedure-oriented
software with object-oriented software may cause a new organisation of the IT infrastructure itself,
which is supposed to have even further reciprocal effects on other independently developed
subsystems. To give an example: there is no need any longer to implement all software functionality
on one central real-time capable controller, because the code is no longer one big procedure, but rather
a hierarchical, intricate and – possibly – even physically distributed set of code elements. New
concepts for controller architecture can be developed and optimised in terms of new degrees of
freedom. Re-modularization of other subsystems may become reasonable as well. Parts of the code
can be located in the field on isolated micro-controllers to economise the wire harnesses to the sensors
and actuators. But such a change may cause problems, if, e.g., information stored on this particular
micro-controller may be needed for a surveillance routine running on a controller, which is – by

183

mistake – not physically connected with it. Hence, there is a need for making the consequences of a
change in a subsystem transparent in order to communicate it to other disciplines at the interfaces.
Another aspect to be considered in terms of evaluating the modularization of an automation system is
the differing tailoring of modules by each involved discipline. As depicted in Figure 1, the
modularization of – de facto – the same machine can vary in terms of the particular points of view. In
this example, the relatively simple machine consists of five modules in the mechanical discipline,
whereas in the software discipline of three modules. Differences result from the way of analyzing
systems and creating modules. The implemented software functions may cover parts of the system
functionality in a different manner as mechanical functions would be mapped to components in order
to tailor hardware modules. The change of the programming paradigm, described above, might have
different effects on every discipline-specific modularisation. Also these consequences have to be made
transparent and communicated on a total system level.

�

sensor
full

sensor
emtpy

hopper

vessel

channeling

sorting
device

pressing
unit

hopper

vessel

sorting device

Module 1

Mechanic modules

M
od

ul
e

4

M
od

ul
e

5

pressing
unit

Module 2

M
od

ul
e

3
ch

an
ne

lin
g

Module 1 M
od

ul
e

2

Software modules

M
od

ul
e

3

hopper

vessel

channeling

sorting device

pressing
unit

Figure 1. Exemplary modularization of the same machine in two different disciplines

While Waldman and Sangal (2009) suggest a methodology to shape and evaluate software modules in
terms of software development, several other scholars are concerned with methodologies to approach
modularization and evaluation of the architecture of partial aspects in each discipline involved (Ulrich,
1995; Pimmler and Eppinger 1994).
There exist also norms and checklists in practice, which evaluate automation systems as a total system.
But these concepts focus on phases of the product life cycle after sales. Aspects of implementation,
maintenance, operational performance of the system etc. dominate these evaluation concepts.
In order to centre an evaluation of automation systems on its total, interdisciplinary designed product
architecture, a new approach has to be developed. Therefore, we propose our central research question
of this paper:

How can we evaluate holistically the impact of the re-modularization of a subsystem on the total
product architecture of an interdisciplinary developed system?

To address this research question, we develop a framework to understand the interrelations of
independently designed subsystems. Using a Multiple Domain Matrix (MDM) (Lindemann et al.,

184

2009), the impact of changes in a subsystem on the total system and the other particular subsystems
can be made visible and evaluable – similar to the propagation of changes in Design Structure
Matrices (DSM) (Clarkson et al., 2001). In the following chapter, a meta-model comprising the
domains of an automation system is created and propositions for a target-oriented analysis are
provided and examined. After that, implications for further steps are discussed. This paper closes with
a conclusion and suggestions for further research.

3 A META-MODEL OF PRODUCT ARCHITECTURE OF AUTOMATION
SYSTEMS
The goal of an evaluation framework for product architecture of automation systems is to provide
transparency of mutual dependencies within the involved domains. With a profound understanding of
interactions between the subsystems the additions, advancements, changes or elimination of
underlying elements can be evaluated in terms of the impact on the total system. The introduction of
an object-oriented programming language – as described in the introduction - is such an exemplary
change of elements in the software domain. Consequently, how can the impact of such a change on the
mechanical part of the system be made transparent?
Ramifications of changes – like described above - have to be expatiated in a model of the total system
reflecting mutual influences of the particular subsystems developed independently by each discipline.
Browning (2001) suggests Design Structure Matrices to be helpful to “display the relationships
between components of a system in a compact, visual, and analytically advantageous format”. In this
paper, we avail ourselves of the advantages of matrix-methodologies and combine all disciplines
involved in an automation system in a Multi Domain Matrix (MDM).
We designed a MDM covering all relevant aspects of an automation system. In the following, the
Meta-Model of our MDM will be presented to make the derived steps for an evaluation more
comprehensible. In the context of our work, the Meta-Model defines the various types of relationships
between the elements of the matrix.
The automation system is structured in five domains: Mechanical components, technical functions,
variables, software functions and controller components. While Ulrich (1995) suggested analysing the
modularization of a mechanical product in terms of its components and related technical functions, we
applied this idea to the software part of an automation system and chose variables and software
functions as complementary domains. In addition to that, controller components realize the logical and
physical connection between the software and hardware components and functions, thus, they are
represented separately in a particular domain. This is advantageous to make both transparent the local
and the logical allocation of components and functionality of the system. Table 1 gives an overview of
the Meta-Model how the influence of each domain on the related domain is characterized and
interpreted in the subsequent analysis.
The development of each subsystem is normally executed independently within the borders of a
discipline. Modularization, changes in product architecture or re-shape of subsystem borders are
planned and performed internally. Although, many different classifications of disciplines are possible
with regards to automation systems, we determined these three to keep it simple: Mechanics, which is
represented by A+B; Information Technology, which is represented by C+D, and, finally E, which
represents interface competence between the previous two and can be referred as Electronics.
The example in the previous chapter of the replacement of one main controller with some micro-
controllers to save costs for wiring, which outlined a simple effect chain of a change in a subsystem,
can be made transparent and manageable in a MDM based on this framework. Especially in the
DMMs, cross-disciplinary linkages can be traced logically and, therefore, be considered in the overall
system architecture, when it comes to changes.

185

Table 1. Meta-model for the evaluation of automation systems

row
[influences]

column

A
Mechanical
Component

B
Technical
Functions

C
Variables

D
Software
Functions

E
Controller

Components

A
Mechanical
Components

is connected
to performs sends signal

to
sends input

for
is physically
connected to

B
Technical
Functions

is performed
by

is
prerequisite

for

is logically
connected to

is
implemented

through
is limited by

C
Variables controls is required

for
is dependent

of
is required

for is stored on

D
Software
Functions

controls is required
for requires is required

for
is running

on

E
Controller

Components

is physically
connected to limits stores runs is connected

to

In the following, we want to clarify the meanings of relevant Domain Mapping Matrices in terms of
evaluating the modularization of an automation system. In these DMMs, changes of subsystems can be
made transparent and effects on other subsystems can be shown. DMM C�A depicts relevant signals
for actuators, which perform technical functions. A signal of a sensor is connected with its particular
variable in DMM A�C. This variable is part of a software function. Thus, DMM A�D can be
deducted logically from DMM A�C, and analogically, DMM D�A from DMM C�A.
The DMMs D�B and B�D imply the theoretically required interdisciplinary mapping of software
functions and technical functions, which is intuitively comprehensible and could be filled easily in
workshops with experts. Additionally, an analytical deduction of the DMMs D�B and B�D can be
done. While the DMMs A�B or B�A match the mechanical realisation of technical functions, the
DMM A�C in connection with DMM C�A describe the link to the software part of the system via
the variables which - in turn - are mapped on the software functions in the intra-disciplinary DMMs
C�D or D�C. This string of logical dependencies is only viable, if the physical connection is
realized and modelled in the DMMs A�E, C�E and D�E and their transposed equivalents. DMM
A�E (E�A analogue) describes the physical connection of the controller and the mechanical
components, which could be interpreted as wiring or communication interface. The input/output-
interface (I/O) of the controller is modelled in DMM C�E (or E�C). The DMMs E�D or D�E
depict the implementation of assigned software functions. DMM B�E plays a subordinate role.

4 DISCUSSION
The framework presented in the previous section allows for an extensive description of automation
systems. In order to gain benefits from these description, it is crucial to know which questions should
be answered by the use of the framework. Thus, in order to enable a target oriented analysis we
developed first hypotheses – which are to be amended in future work – concerning the estimated
results of the former:
[H1] Changes in one domain ramify into the total system more intensively, the more interrelations
with other domains exist.
These interrelations can be made transparent in the interdisciplinary DMMs. Changes and their
triggered effect chains can be derived from the MDM. Changes could be, e.g. elimination of an
element, substitution of an element by n others or the elimination or creation of coherences between
two elements.

186

[H2] If all subsystems are modularized in terms of their mutual influences depicted in the
interdisciplinary DMMs A�E, C�E and D�E or their transposed equivalents, the total system can
be assumed as optimized.
This second hypothesis corresponds to the optimal modular design of the automation system
architecture, as the DMMs A�E, C�E and D�E – representing the discipline electronics – can be
seen as the interface between mechanics and information technology. Thereby, the question is to be
answered whether differences arise, e.g. if the automated systems software functions are modularized
and how this would affect mechanical view of the system. Thus, by regarding DMMs A�E, C�E
and D�E the dependencies between all three disciplines are taken into account equally.
Additional work has to concentrate on the assessment of the domains of automation systems and
components. Similar to work by Kreimeyer (2010) on process management and by Lindemann et al.
(2009) on product re-modularization, the regarded automated systems are to be assessed by the
application of structural metrics. Thereby, existing metrics are to be examined whether they are
applicable to automation systems and how they can be interpreted. Hence, the sub-matrices of the
MDM of automated systems are to be filled in order to allow such analysis. The data acquisition will
be conducted using automation production systems available at the authors’ research facility.
Subsequently, single elements and modules are to be assessed concerning their relevance within the
whole system. Thus, significant elements in the structure of the system are to be identified, which
influence the former’s modularity or the complexity of the overall system or subsystems. This should
support, for example, the estimation of possible expenses for programming the software, by gaining
insight on the amount of the software structure’s complexity.
Eventually, the aim is to permit a holistic assessment of automated production systems concerning
their complexity and optimal modularity – e.g. the extent of single modules or even the number of
modules – forming the basis for the development of guidelines for re-modularisation of existing
systems and also for the development of new modular automated systems.

5 CONCLUSION AND OUTLOOK
Currently, the development of new automation production facilities or optimisation of existing
systems do not take into account the link between the different views of software, electronics and
mechanical development. Hence, software and hardware components are developed or optimised apart
from each other in separate teams. Although developers might be aware of the interfaces between both
subsystems, these interfaces are not used actively in the process to gain valuable insights concerning
possible optimisation of the overall system.
Therefore, a framework enabling a holistic analysis of automation production facilities is presented in
this paper. The former is represented by a Multiple Domain Matrix. This MDM comprises five
domains allowing for a complete description of an automation system, i.e. the mechanical
components, technical functions, variables, software functions and controller components.
Based on this framework, an analysis can be conducted concerning the modularisation of the
automation system. The impact of the modularisation of one domain on the whole system can be
examined. Thus, in order to re-modularize an existing system, present modules can be assessed
regarding the need of adjustment. Moreover, new modules can be derived to form an optimal
architecture of the whole automation system.

REFERENCES
Clarkson, P. J., Simons, C., & Eckert, C. (2001). Predicting change propagation in complex design. In

ASME International Design Engineering Technical Conferences (Design Theory &
Methodology Conference), Pittsburgh, September 2001.

DIN EN 61131, Part 3 (2003). Programmable controllers – Part 3: Programming languages
(IEC 61131-3:2003); German version EN 61131-3:2003. Berlin: Beuth.

Katzke, U. (2009). Spezifikation und Anwendung Spezifikation und Anwendung einer
Modellierungssprache für die Automatisierungstechnik auf Basis der UML. Kassel: Kassel
university press.

Katzke, U.; Vogel-Heuser, B. (2009). Vergleich der Anwendbarkeit von UML und UML-PA in der
anlagennahen Softwareentwicklung der Automatisierungstechnik – Beispiel einer
vergleichenden empirischen Untersuchung von Modellierungssprachen. In Automatisierungs-

187

technik (at), 57, 7, pp. 332-340.
Kreimeyer, M. (2010). A Structural Measurement System for Engineering Design Processes. Munich:

Dr. Hut (to be published).
Lindemann, U., Maurer, M., & Braun, T. (2009). Structural Complexity Management – An Approach

for the Field of Product Design. Berlin: Springer.
Pimmler, T. U., & Eppinger, S. D. (1994). Integration analysis of product decompositions. In ASME

International Design Engineering Technical Conferences (Design Theory & Methodology
Conference), Minneapolis, September 1994.

Ulrich, K. (1995). The role of product architecture in the manufacturing firm. Research Policy, 24,
419 - 440.

Waldman, F., & Sangal, N. (2009). Practical uses of classification with DSM. In Proceedings of the
11th International DSM Conference, DSM 2009, October 2009 (pp. 119-130). Munich: Hanser.

Contact: Maximilian Kissel
Technische Universität München
Institute of Product Development
Boltzmannstraße 15
85748 Garching
Germany
00�������������	�
00���������������

���������������
��������������

188

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

A Framework for Evaluating Product g
Architecture of Automation Production

FacilitiesFacilities
Maximilian P. Kissel1, Katharina G. M. Eben1, Steven Braun2,
Jakob Schmidt-Colinet2, Martin Obermeier2, Udo Lindemann2

and Birgit Vogel-Heuser2

1Institute of Product Developmentst tute o oduct e e op e t
2Chair of Information Technology in Mechanical Engineering

Technische Universität München

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

OutlineOutline

• Introductory Example

• How to create the Evaluation Framework?

• Meta Model of the Framework

• Preliminary Hypotheses

• Further Steps and Conclusionsp

12th International DSM Conference 2010- 2

189

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Introductory Example – Change of the programming paradigm in
automation production facilities

• Process-oriented programming structure treestructure tree

– uses logical blocks on the
same hierarchical level

– requires storage of the whole q g
code on one real-time
controller

call of functioncall of function

• Object-oriented programming
t hi hi– can create hierarchies,

classes, children, modules
etc.

ll d l t f– allows development of
independent, encapsulated
modules within the
a tomation s stem

12th International DSM Conference 2010- 3

automation system

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Introductory Example – Change of the programming paradigm in

Object-oriented programming Object-oriented programming

automation production facilities

Process-oriented programming Process-oriented programming

Abbildung 2a: Lager Abbildung 2b: Kranrepository crane

*

Abbildung 2c: Stempel Abbildung 2d: Sortierstrecke

Micro-Programmable
L i C ll

stamp tool separation line

Micro
ControllerLogic Controller

(PLC)

Micro-
Controller Micro-

Controller

Micro-
Controller

12th International DSM Conference 2010- 4

* Katzke, U. (2009). Spezifikation und Anwendung Spezifikation und Anwendung einer Modellierungssprache für die Automatisierungstechnik auf Basis der UML. Kassel: Kassel
university press.
Katzke, U.; Vogel-Heuser, B. (2009). Vergleich der Anwendbarkeit von UML und UML-PA in der anlagennahen Softwareentwicklung der Automatisierungstechnik - Beispiel einer
vergleichenden empirischen Untersuchung von Modellierungssprachen. In Automatisierungstechnik (at), 57, 7, pp. 332-340.

190

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Independent Modularization in AutomationIndependent Modularization in Automation

Problems
• Each discipline involved develops its subsystem independentlyEach discipline involved develops its subsystem independently
• The impact of re-modularization, elimination or attachment of elements of a

subsystem on the other subsystems beyond its interfaces remains neglected
Challengesg
• Need for a modularization approach on a total system level
• Elaboration of further potential improvements on a total system level
• Need for guidelines how to design complex, interdisciplinary developed automationNeed for guidelines how to design complex, interdisciplinary developed automation

systems

Information
Technology

Mechanical
Hardware

Electronics

12th International DSM Conference 2010- 5

Electronics

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Literature ReviewLiterature Review

• Waldman and Sangal (2009) suggest a methodology to shape and evaluate
software modules in terms of software development (Lattix)p ()

• Methodologies to approach modularization and evaluation of product architecture
were presented by Ulrich (1995) and Pimmler and Eppinger (1994)

• Using a Multiple Domain Matrix (MDM) (Lindemann et al., 2009), the impact of
changes in a subsystem on the total system and the other particular subsystems
can be made visible and evaluable

• Browning (2001) suggests Design Structure Matrices to be helpful to “display the
l ti hi b t t f t i t i l drelationships between components of a system in a compact, visual, and

analytically advantageous format”

How can we evaluate holistically the impact of the re-modularization of a
subsystem on the total product architecture of an interdisciplinary developed

automation system?

Browning T. R., (2001). Applying the Design Structure Matrix to System Decomposition and Integration Problems: A
Review and new Directions. IEEE Transactions on Engineering Management, Vol. 48, No. 3, pp. 292-306
Lindemann, U., Maurer, M., & Braun, T. (2009). Structural Complexity Management – An Approach for the Field of
Product Design. Berlin: Springer.
Pimmler, T. U., & Eppinger, S. D. (1994). Integration Analysis of Product decompositions. In ASME International

12th International DSM Conference 2010- 6

Design Engineering Technical Conferences (Design Theory & Methodology Conference), Minneapolis, September
1994
Ulrich, K. (1995). The role of product architecture in the manufacturing firm. In Research Policy, 24, 419 - 440.
Waldman, F., & Sangal, N. (2009). Practical Uses of Classification with DSM. In Proceedings of the 11th International
DSM Conference, DSM 2009, October 2009 (pp. 119-130). Munich: Hanser.

191

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

How to create the Evaluation Framework?How to create the Evaluation Framework?

How can the product architecture of complex, interdisciplinary
developed systems be evaluated in automation technology?developed systems be evaluated in automation technology?

„System-Cockpit“ for
automation facilitiesIncremental

Requirements,
H th

Requirements,
H th

Requirements,
H thl e automation facilities

Evaluation of the total system
architecture

Incremental
procedural
facilities

ul
ar

iz
at

io
n

HypothesesHypothesesHypotheses

 s
ys

te
m

 le
ve

an
d

re
le

va
nc

e

Evaluation
Framework
Evaluation
Framework

Metrics library

Elaboration of specialities

Continuous
procedural
facilities

sp
ec

ifi
c

m
od

u

io
n

on
 a

 to
ta

l

ar
ac

te
ris

tic
s

a

p

Recommendations for
handling complexity in

Hybrid
facilities D

om
ai

n-

Experts from
Industry and
Experts from
Industry and
Experts from
Industry and M

od
ul

ar
iz

at

S
tru

ct
ur

e
ch

a

automationsciencesciencescience

research subjectsresearch subjects methodologies objectives

12th International DSM Conference 2010- 7

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Meta Model of the frameworkMeta Model of the framework

A Erow [influences]
column

A
Mechanical
Component

B
Technical Functions

C
Variables

D
Software Functions

E
Controller

Components

A
M h i l i t d t f d i l t d i t f is physically Mechanical

Components
is connected to performs sends signal to sends input for p y y

connected to

B
Technical Functions is performed by is prerequisite for is logically

connected to
is implemented

through is limited byg

C
Variables controls is required for is dependent of is required for is stored on

D
Software Functions controls is required for requires is required for is running on

E
C t ll is physically li it t i t d tController

Components

p y y
connected to limits stores runs is connected to

The chain of cause and effects of a change can be made transparent in

12th International DSM Conference 2010- 8

these DMMs, which describe relations between subsystems

192

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Preliminary HypothesesPreliminary Hypotheses

[H1] Changes in one domain ramify into the total system more intensively,
the more interrelations with other domains exist.

[H2] If all subsystems are modularized in terms of their mutual influences [] y
depicted in the interdisciplinary DMMs A�E, C�E and D�E or their
transposed equivalents, the total system can be assumed as optimized.

To be continued…

12th International DSM Conference 2010- 9

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

Further StepsFurther Steps

• Include feedback from scientists and experts from industry in the
evaluation conceptevaluation concept

• Fill the Meta Model with data of the research automation facilities at the
institute and determine structure characteristics and their relevance
C l l t ti l d l i ti b t d t t l t l l• Calculate optimal modularization on a subsystem and a total system level
and perform sensitivity analyses by simulating changes of subsystems

• Deduce general assignable metrics for automation facilities
• Give recommendations for handling complexity in automation

technologies

12th International DSM Conference 2010- 10

193

BY MODELLING DEPENDENCIES
MANAGING COMPLEXITY

ConclusionsConclusions

• Software and hardware components of an automation system are
developed or optimised on a subsystem level in separate teamsdeveloped or optimised on a subsystem level in separate teams

• The need to re-think this design approach has been presented in this
presentation

• We developed a concept to evaluate automation facilities on a total
system level and deduced preliminary hypotheses

• Further steps towards an evaluation concept based on Multi Domain• Further steps towards an evaluation concept based on Multi-Domain-
Matrices have been outlined

12th International DSM Conference 2010- 11

194

