
RPS Research into Design: Supporting Multiple Facets of Product Development “icord2009-chap” 2004/12/27 295

14
COMMON VERSIONING OF
PRODUCT DATA AND
ENGINEERING PROCESSES

Martin Eignera and Fabrice Mogo Nemb

University of Technology Kaiserslautern, Department of Mechanical and Process Engineering, Institute for
Virtual Product Engineering, Gottlieb-Daimler-Str/Geb.44, 67663 Kaiserslautern, Germany, P.O. Box 3049,
67653 Kaiserslautern, Germany, Tel: +49-(0)631-205-13873/22312, Fax: +49-(0)631-205-3872.
E-mail: aeigner@mv.uni-kl.de, bmogo_nem@mv.uni-kl.de

PDM/PLM (Product Data/Lifecycle Management) and Workflow Management (WM) systems have been
established both as backbone for the management of product data and their related engineering processes.
Both in collaborative and multidisciplinary engineering contexts, changes occurring on product data and engi-
neering processes must be tracked to fulfill (inter)national legislations such as (re)configuration management.
Versioning is a key solution to achieve it. However its separate implementation in both systems led to less
traceability in engineering. Although the advantages of integrating PDM/PLM with WM systems have been
noticed and addressed, the way changes have to be tracked and versions be managed in such an integrated
context has been neglected so far. A comprehensive understanding of existing versioning concepts in product
data and engineering process management is necessary for addressing it. This paper reviews some of these
concepts and proposes a semantic versioning concept for our integrated product and process metamodel called
Engineering Networks.

Keywords: Product Data Management, Workflow Management, Versioning, Engineering Networks.

1. INTRODUCTION
Today’s globalized world and resulting perturbations in the business environment drive enterprises to
steadily reduce the time and costs for product development as well as to be flexible in the deployment
of their business processes. PDM/PLM (Product Data/Lifecycle Management) and WM (Workflow
Management) systems have therefore been established in enterprises respectively for the manage-
ment of the product relevant information throughout the product lifecycle and for the modeling and
deployment of the engineering processes they walk through. The increasing complexity of products
in collaborative and multidisciplinary product engineering contexts (e.g. Mechatronics) and the rising
demands for more product reliability and product liability raised new challenges. In case for example of
the reconfiguration of a product configuration after a crash according to product liability laws, not only
the states of the relevant items at the time the product was built could be of interest but their historical
evolvement too (e.g. the nature and the version of processes they walked through reaching these states).
Gathering such information from nowadays separated involved and distributed WM and PDM/PLM
systems can be a real tricky and complex task. A tighter management of product data with their engi-
neering processes is therefore required. This has been noticed and the usage of a common metamodel
for defining both the product data model and their engineering process models and thus for enabling
the integration of PDM/PLM with WM systems in product engineering has been proposed.1 However,
existing approaches in this area have mostly focused on modeling aspects whereas semantic concepts
describing the way changes on product data, product data model as well as changes on associated
engineering process models must be managed and propagated have been neglected. This paper reviews
some concepts and terminologies of versioning in product data and engineering process management

295



RPS Research into Design: Supporting Multiple Facets of Product Development “icord2009-chap” 2004/12/27 296

296 Research into Design: Supporting Multiple Facets of Product Development

and proposes a semantic concept for their coequal implementation in an integrated product and process
environment.

The remainder of this paper is organized as follows: in Section 2 we introduce the concept of
versioning in general. Then, we separately review versioning in product data and engineering process
management and analyze their similarities. In Section 3, we firstly introduce our integrated modeling
concept for product data and engineering processes called Engineering Networks, and secondly propose
a semantic concept for versioning in it. We finish this paper we a conclusion and outlook in Section 4.

2. VERSIONING
Versioning is likely one of the most important concepts in the field of information management. It
is needed in application areas where not only the current state of a data (called a design object) is
important but its previous states (called versions) as well.1 Katz defines the terms design object and
version as follows: “A design object is an aggregation of design data treated as a coherent unit by
designers. Over time, its semantically meaningful snapshots form versions.”2 In this paper, we simply
use the term object instead of design object and assume it to be an instance of a given object type (a
schema or a class in terms of object orientation). An object under version control is called a versioned
object. A version denotes a specific state of a versioned object and can be seen itself as a versioned
object for its successor versions.

Many disciplines are nowadays concerned with versioning. Thus, an object can represent for example
a workflow, a Computer-Aided-Design (CAD) document, a source or an executable file, a Very-
High-Speed-Integrated-Circuit-Hardware-Description-Language (VHDL) design document, or even
a hierarchical structure of mechanical, electrical and software items in case of Mechatronics. There
are various reasons for creating a new version of a versioned object. In most of the cases a new version
results from changes to the previous one. Instead of overwriting the old states of that versioned object,
they are preserved and managed for different purposes. Depending on the application field, only one
(mostly the newest) or many versions of a versioned object can be in use at a given time. Conradi
uses the term Revision for a version intended to supersede its predecessor and the term Variant for a
version which is intended to coexist with its predecessor.5 Due to the non consistent usage of the terms
revision and variant in the literature, we don’t make a difference between a version and a revision in this
paper. A Version model defines the versioned objects, version identification and organization, as well as
operations for retrieving existing versions and constructing new versions. It consists of a product and
a version space.5 The product space represents the objects to be versioned and their relationships. The
version space contains the versions of versioned objects and determines the way they are organized.
Usually, versions of an object are organized in an acyclic graph called a version graph. It consists of
nodes and edges and records the history of changes operated on that object throughout its lifecycle.
The nodes in the graph represent the versions and the edges the dependencies (e.g. ancestor-successor)
between them. Due to time and space optimization reasons, a version model can be state- or change-
based. In the former the states of each object version are stored. In the latter only the differences
(called the delta) between predecessor and successor versions are stored. The remainder of this section
analyzes versioning in product data and engineering process management.

2.1. Versioning in Product Data Management
Product data management (PDM) is the discipline responsible for the management of product data
in engineering disciplines such as Mechanics (ME) or Electrics/Electronics (E/E). For a long time it
has been restricted to data related to design and manufacturing. In order to support all the activities
during the whole product lifecycle from the requirement phase up to recycling, the scope of PDM
has been extended to Product Lifecycle Management (PLM). With the introduction of mechatronics,
product lifecycle management should support the three disciplines ME, E/E and Software Engineer-
ing (SE). Although the discipline of SE was kept apart and evolved separately, similarities between
PDM/PLM and software configuration management (SCM) exist.8,9 Both disciplines deal with com-
plex data structures and are concerned with controlling access and changes on data. Although SCM



RPS Research into Design: Supporting Multiple Facets of Product Development “icord2009-chap” 2004/12/27 297

Common Versioning of Product Data and Engineering Processes 297

is mostly concerned with versioning textual files instead of complex object structures as it is the case
in PDM/PLM, both can be assumed to deal with objects having hierarchical and/or networked struc-
tures of (inter)related objects. Due to the heterogeneity of the three engineering disciplines involved in
mechatronics, it remains a big challenge to develop a global product model mapping the mechatronical
product data. We consider however for our analysis the product space in PDM/PLM as a hierarchical
structure of (inter)related (vertically and/or horizontally), distributed and multidisciplinary objects.

Analyzing versioning in PDM/PLM requires distinguishing between the modeling abstraction level
concerned, the granularity of versioned objects and the concepts used for version identification and
change propagation. In PDM/PLM versioning is used in general to manage the changes occurring
during the management of product lifecycles. Two of the following four modeling abstraction levels
Meta-metamodel, Metamodel, Model and Instance as defined in Ref. 15 are therefore directly con-
cerned. Versioning at Instance level can be seen as the backbone for the realization of change and
configuration management as described by standards and recommendations like for example DIN 672,
DIN ISO 9001, EG-Norm 85/374, EN ISO 10007 and SASIG ECM Recommendation. Changes at this
level as described in DIN 6772 can be initiated for failure adjustment, customer or market needs, or
after changes in legislatures.14 Example giving, after some problems have been reported by customers,
the version (VerA) of car current being manufactured and offered to the customers is changed and a
new version (VerB) reflecting the changes is released for future manufacturing processes. At the next
higher abstraction level, versioning deals with the evolution of the product data models (schemas) use
to describe the product data at Instance level. Example giving, in order to support a better management
of the overall costs of a car throughout its lifecycle, a company extends its underlying product data
model for car and adds an additional attribute for capturing the recycling costs to the already existing
set of attributes. Further, considering the today’s contexts of configurable products enabling customers
to individually configure their product according to a specific product family definition, this strong
separation of the two abstraction levels Instance and Model in PDM/PLM becomes more complex as
in conventional data modeling perception. A product instance is instantiated in such a case according
to a product family description (also called configuration model) which in turn can be considered as
being an instance of a specific product data model.3 For complexity reason, only versioning in product
data management at Instance level is addressed in this paper. The evolvement of product data models
and the consideration of configurable products will be addressed in future works.

Considering our assumption of hierarchical structure of (inter)related objects building a whole prod-
uct, the granularity of versioned objects influences the required versioning concept. We distinguish
between versioning an atomic object, a composite object or even a relationship between objects. The
former addresses the versioning of objects with atomic structure i.e. without other versioned objects as
component. It can be seen as the simplest case due to the non existence of dependencies between objects
in contrast to versioning a composite object. A composite object consists of other versioned objects
and its state at a given time is called a configuration. Change on a component in a composite object can
initiate cascading changes on other objects. Although versioning a composite object is also concerned
with versioning atomic objects, it requires mechanisms to deal with propagation of changes which are
addressed later. Versioning a composite object can however be seen as a special case of versioning a
relationship between objects. It represents the versioning of the vertical part-of relationship between
an object and its component objects. The consideration of the overall product lifecycle and the multidis-
ciplinarity require paying more attention to this granularity of versioning in the future. Depending on
the nature of the relationship, change on an object can affect in a specific way the objects (inter)related
to it. Realizing this requires the modeling of the semantic of relationships which can be achieve using
powerful modeling constructs or ontology.

Realizing versioning requires a mechanism for the unique identification of a versioned object and
their versions. Further such a mechanism should enable the decision whether two versions belong to the
same versioned object. This is realized usually by assigning unique object identifier (OID) to versioned
objects and their versions. In order to be able to decide whether or not two object versions belong to the
same versioned object the OID is often subdivided in a version independent part and a version specific
part. The version independent part (ID) is generated by the versioning system and assigned to each



RPS Research into Design: Supporting Multiple Facets of Product Development “icord2009-chap” 2004/12/27 298

298 Research into Design: Supporting Multiple Facets of Product Development

new created versioned object and remains the same during its whole lifecycle (e.g. a new part with
part identifier 4711). For each its versions a unique version identifier (VID) is generated and together
with the identifier ID is used to uniquely identify a version (e.g. the first third versions of the part with
part identifier 4711 are 4711.1, 4711.2 and 4711.3). The management of the two identifiers is not as
easy as described above. It embodies the underlying mechanism dealing with version evolvement and
propagation of changes. In the case of versioning an atomic object such a mechanism can be applied.
In case of versioning a composite object or a relationship in general, a change on one object can
initiate changes on other (inter)related objects. In order to limit the impact of such a change to only
few objects the notion of compatibility between object versions is used.14 The problem of binding an
object configuration to its versioned components is also interesting in versioning. It can be static i.e. to
a specific version of the component, dynamic i.e. to the newest version of the component or in general
to settings that can be resolved at runtime, event triggered i.e. after the occurrence of a specific event,
or time triggered i.e. at a given time.

2.2. Versioning in Engineering Process Management
The Workflow Management Coalition6 defines the term business process as “A set of one or more
linked procedures or activities which collectively realize a business objective or policy goal …”. Its
computerized facilitation or automation of a business process, in whole or in part is called Workflow.7

An instance of a Workflow is called a Case and corresponds to the execution of some works according to
the underlying workflow definition called Workflow Model or Process Model. We use the term process
for both a process and its associated computerized automation workflow and restrict our analysis to
processes in engineering called engineering processes.

The modeling of a process is itself a process. That means a process is rarely modeled perfectly at
once and undergoes different changes during its lifecycle. Due to the fast changes in today’s globalized
world, enterprises are driven to be able to react quickly by adapting their processes in order to stay
competitive. Thus, managing the evolution of process models and their impact on process instances
has become a necessity.8 In nearly every process modeling context, a process is considered as a
composition of tasks, roles and links (routing or data flows). Some modeling languages allow the
definition of process hierarchy, i.e., a process can recursively consist of another (sub) processes. We
consider a process as a set of tasks, roles, links and (sub) processes, and a process model change
as any modification (insertion, deletion or reordering of tasks, etc.) of an existing process model.
We distinguish three categories of process changes: evolutionary changes, temporary changes and
changes aiming at creating process variants. For a better understanding let us consider the example of
a production process in an enterprise manufacturing mechatronical car’s engine. The enterprise owns
at beginning only a single process which evolves over time (see Figure 1).

The reasons behind an evolutionary changes are numerous: changing business context (e.g. demand of
individual customers), changing legal context (e.g. new legislature) or changing technological context
(e.g. change in technical infrastructures).9 Changes aiming at resolving modeling errors detected during
process deployment can also be assigned to this category. In this case the underlying process model
must be permanently changed and all the cases started subsequently follow the new process model. In
the research and praxis, expiration and effective dates are used to deal with this category of change.
In Figure 1 part (a), the initial production process (VerA) is permanently changed and a new version
(VerB) is created. VerB will become effective at tEff . That means at tEff the process VerA will expire
and once all of the running cases tied to it will complete, it will become inactive and can be therefore
archived. This first category of changes is supported by many commercial workflow management
systems like Oracle Bea and ActiveBPEL. A similar concept is also used in the ISO Standard 10303
(STEP) Part 214 Unit of Functionality S8 for versioning production processes. The second category is
concerned with changes aiming at reacting to temporary changes in the process environment. This is
typically the case if an enterprise must react quickly to unexpected or unusual events. It addresses the
problem of flexibility during process deployment. Figure 1 part (b) illustrates it. Due to, for example,
maintenance activities the resources required to execute the task T2 in the process version VerB are



RPS Research into Design: Supporting Multiple Facets of Product Development “icord2009-chap” 2004/12/27 299

Common Versioning of Product Data and Engineering Processes 299

Figure 1. Changes on engineering processes during their lifecycle.

not available. The manager in charge for production decides to skip the execution of T2 and switches
to a temporary defined task T2’ for compensation. Such a change affects one or a group of cases and
doesn’t lead automatically to a permanent change of the underlying process model (VerB). Only the
cases started between tB and tE use the new process model VerC. Cases started after tE use the previous
process model VerB. If at least one case has been successfully executed following the process model
VerC it must be archived for traceability purposes. The last category of change is concerned with the
creation of new variants of a process model. Afterwards, many versions of that process model are valid
at the same time (see Figure 1 part (c)). For every new case one of the process variants VerB, VerD
or VerE can be chosen. This last category can also be seen as extension of the second whereby either
after a temporary change the resulting process model is required to be permanently available or during
a temporary change new cases must be started according to an old version.

During our analysis some important points have been intentionally omitted so far. The first point
concerns the question: What happens with cases running before and after changes are initiated and
performed? The second question deals with the problem of identifying the versions. The former has
been addressed in many research activities and one of the following solutions can apply9: Forward
recovery (the old cases are aborted and appropriate measures are taken; Backward recovery (the old
cases are aborted and rolled back or compensated, and then they are restarted according to the new
process model); Proceed (the old cases are handled the old way, new cases are handled the new way);
Transfer (the old cases are transferred to the new process model); Detour (for momentary changes it is
often wise to allow a temporary detour such that the unexpected situation can be cleansed). The second
question is of special interest for our analysis. Assuming a hierarchical structure of (flexible) process
models where a (sub) process model or even a single task can be used in several process models,
only few research activities currently address the problem of numbering the process versions for their
identification. For example, instead of using the numbering system consisting of two digits separated
by a dot where the first represents the main version and the second the sub version, Zhao proposes a
numbering concept consisting of three digits x.y.z.12 He assumes thereby a process in contrast may
evolve along two axes, i.e., the permanent improvement and the temporary adaptation. The first digit
x denotes the major version; the second digit y denotes the minor version and the third digit z denotes
the temporary variation of a process model. Applying this reasoning to the example in Figure 1 leads
to the assignment of the number 1.0 to VerA, 1.1 to VerB, 1.1.1 to VerC, and respectively 1.2 and 1.3
to VerD and VerE. This numbering concept is indeed interesting but it doesn’t take in consideration the



RPS Research into Design: Supporting Multiple Facets of Product Development “icord2009-chap” 2004/12/27 300

300 Research into Design: Supporting Multiple Facets of Product Development

situation where a temporary change is applied on a process version resulting from another temporary
change. Following this numbering concept leads to the extension of the three digits x.y.z to four digits
w.x.y.z and so forth.

2.3. Identified Similarities and Differences in Both Disciplines
After versioning has been analyzed in both disciplines some similarities and differences can be observed
according to the criterions: reasons for versioning, modeling abstraction levels concerned with ver-
sioning and the granularity of versioning. In both disciplines versioning is used as key concept for
keeping track of changes. In PDM/PLM versioning can occur at Model level as well as at the Instance
level as discussed in Section 2.1, whereby we only focused in this paper on versioning at Instance
level. In engineering process management instead, versioning only occurs at Model level. Even though
changes on running process cases are allowed at Instance level (in context of flexible processes), they
directly affect the underlying process model at Model level. The last criterion addresses the granular-
ity of versioned objects. In both disciplines we can distinguish between versioning a single item, a
composite item or a relationship.

3. VERSIONING IN ENGINEERING NETWORKS
Engineering Networks is a concept currently under development. It aims the increasing of traceabil-
ity and quality in product lifecycle management and further at reducing the costs for PDM/PLM
implementation in Small and Medium sized Enterprises (SME).16 It supports the coequal modeling of
product data and their related engineering process through the definition of a common metamodel. It
is based on the two concepts of Engineering Object (EO) and Engineering Process (EP). Considering
the two modelling abstraction levels Model and Instance, an EO represents at Instance level an object
in a given state in its lifecycle (e.g. a mechanical part with number 4711 in its release state and with
current version number v5). It is defined at Model level by an EO-Type. An EP represents at Instance
level an instance of an engineering process in a given state (e.g. in execution, terminated or aborted). It
is defined at Model level by an EP-Type which is related with the corresponding EO-Type definition.
Engineering Networks is located at the Metamodel level (see Figure 2). EO-Type and EP-Type can
be considered as an extended type of class in terms of object orientation. In Figure 2 for example five
different EO-Types are used at Model level to represent a product structure consisting of an EO-Type
for a product (PR), an EO-Type for a product function (F) and an abstract EO-Type for physical items
in a product (I). The abstract EO-Type I is the parent type in the EO-Type hierarchy consisting of
EO-Types for real physical part (P) and assembly of parts (A). The link between the EO-type Types
F and I denotes that between a function and a physical item (part or assembly) a dependency may
exist. At the same modeling abstraction level, four different EP-Types are used to define a process
structure representing an engineering change management process (EP-Type CMP) for a product. It
consists of an impact analysis process (EP-Type IAP), a cost analysis process (EP-Type CAP) and an
engineering release process (EP-Type ERP). The link between the PR and CMP relates a product with
its change process. An EP-Type can also be associated to a relationship (e.g. ERP is associated to the
link between A and I). The meaning of such a relationship is illustrated at Instance level in Figure 2.
PR1 is an instance of PR and consists of the instances F1, F2, F3 of F. A1, A2 and A3 are instances
of A. The instance A2 of A has been released using an instance of ERP and is part of the assemblies
A1 and A3. The link between A2 and A3 has additionally been released using an instance ERP for
electro magnetic compatibility reasons. Instance of different versions of the EP-Type ERP have been
used and such information are crucial for traceability and reconfiguration.

In order to version instances of EO-Types (i.e. EOs) in Engineering Networks as described above,
we use the concepts of versioning composite objects and relationships as described in Section 2.1.
Identifiers for EOs are therefore composed of a version dependent and a version independent part. In
case of compatibility between a new version of an EO and its predecessor, the new emerging EO version
shares the same identifier with its predecessor and only a new version identifier is generated. Otherwise



RPS Research into Design: Supporting Multiple Facets of Product Development “icord2009-chap” 2004/12/27 301

Common Versioning of Product Data and Engineering Processes 301

Figure 2. Position of Engineering Networks in the four modeling abstraction levels.

a fully new identifier is created and the emerging EO version is handled further on as a fully new EO. We
also apply this concept of versioning composite objects for versioning EP-Types. We need however an
analogical concept of compatibility between two versions of a process model. Notions of equivalence
between Workflow models have been addressed in details in Ref. 18 The concepts described therein
have been kept generic since the aim was the providing of means for assessing equivalence between
workflows described using different languages and even different modeling skills and therefore for
enabling inter-language mapping of workflows. Focusing on our purpose of defining a concept for
assessing compatibility between engineering processes, we define two versions of an engineering
process model compatible if they achieve under the same environmental conditions the same goals. We
mean with goals the same observable behaviors which can be formally described using workflow traces.
This definition is based on a relaxed concept of Observational Equivalence as described in Ref. 18 The
final assessment of compatibility is leaved to the appreciation of the engineering process administrator.
We use this concept in EN for applying the same concept of versioning EO instances to versioning
EP-Types and hence to find a common basis for commonly defining them. In Engineering Networks,
two types of relationships between product and engineering processes can be distinguished. Those
are: the relationship between an EO and an EP at Instance level and the relationships between an EO-
Type and an EP-Type at Model level. The former is used for traceability purposes in engineering. The
latter is defined during product data modeling and relates EO-Types with their associated engineering
processes. In Engineering Networks, changing an EO doesn’t require changing its underlying EO-Type
definition or associated EP-Types. However, changing an EP-Type can affect related EO-Types since
some EOs instantiate afterwards could be required to use the new version of the changed EP-Type. This
case has been discussed in this paper and relies on the concept of compatibility between two process
versions. If after a change a version of an EP-Type is incompatible with its predecessor version, the
associated EO-Types are affected by the change too and consequently need to be versioned.

4. CONCLUSIONS AND OUTLOOK
In order to increase quality and traceability in product engineering, a tighter management concept for
product data and related engineering processes is required. The usage of a common metamodel for
defining both the product data model and their engineering process models enables the integration



RPS Research into Design: Supporting Multiple Facets of Product Development “icord2009-chap” 2004/12/27 302

302 Research into Design: Supporting Multiple Facets of Product Development

of PDM/PLM with WM systems and offers good opportunities for achieving it. In order to address
the versioning and the propagation of changes in such an integrated context, a review of versioning
concepts and terminologies in both product data and process management has been done in this paper.
Its result has been used as fundament for proposing a semantic concept dealing with propagation of
changes occurring on product data and engineering process models. For complexity reason, only the
versioning in product data management at Instance level has been considered. The evolvement of
product data models after a change and the consideration of configurable products will be addressed
in future works.

REFERENCES
[1] Kovse, J. (2005). Model-Driven Development of Versioning Systems, Ph.D. Thesis, Department of Computer

Sciences, Kaiserslautern University of Technology.
[2] Katz, R. H. (1990). Toward a Unified Framework for Version Modeling in Engineering Databases, ACM Com-

puting Surveys, 22(4), December.
[3] Kovacs, Z., McClatchey, R., Le Goff, J.-M. and Baker, N. (1999). Patterns for integrating manufacturing product

and process models, third international conference on Enterprise Distributed Object Computing, proceedings,
pp. 37–48.

[4] Männistö, T. and Sulonen, R. (2007). Evolution of Schema and Individuals of Configurable Products, Lecture
Notes in Computer Science, 1727:12–23, July 2007.

[5] Conradi, R. and Westfechtel, B. (1998). Version Models for Software Configuration Management, ACM Com-
puting Surveys, 30(2), June.

[6] WFMC (1999). Workflow Management Coalition — Terminology & Glossary, Document Number WFMC-TC-
1011, Document Status — Issue 3.0.

[7] Hollingsworth, D. (1995). Workflow Management Coalition — The Workflow Reference Model, The Workflow
Management Coalition Specification, Document Number TC00-1003, Document Status — Issue 1.1, January.

[8] Bea, H. and Bae, J. (2007). A Version Management of business Process Models in BPMS, International Workshops
(APWeb/WAIM 2007), Lecture Notes in Computer Science 4537:534–539.

[9] Van der Aalst, W. M. P. and Jablonski, S. (2000). Dealing with workflow change: identification of issues and
solutions, International Journal of Computer Systems Science & Engineering, 15(5):267–276, September.

[10] Westfechtel, B. and Conradi, R. (1998). Software Configuration Management and Engineering Data Management:
Differences and Similarities, ECOOP’98 SCM-8 Symposium Brussels, Proceedings, Lecture Notes in Computer
Science (LNCS), 1439:95–106.

[11] Estublier, J., Favre, J. M. and Morat, P. (1998). Toward SCM/PDM integration?, ECOOP’98 SCM-8 Symposium
Brussels, Proceedings, Lecture Notes in Computer Science (LNCS), 1439:95–106.

[12] Xiaohui, Z. and Chengfei, L. (2007). Version Management in the Business Process Change Context, 5th Inter-
national Conference on Business Process Management (BPM 2007), Proceedings, Lecture Notes in Computer
Science (LNCS), 4714:198–213.

[13] Hein,l P., Horn, S., Jablonski, S., Neeb J., Stein K. and Teschke M. (1999). A comprehensive approach to
flexibility in workflow management systems, International Joint Conference on Work Activities Coordination and
Collaboration (WACC’99), Proceedings, pp. 79–88.

[14] Eigner, M. and Stelzer, R. (2008). Produktdatenmanagement-Systeme: Ein Leitfaden für Product Development
und Life Cycle Management, Springer Verlag Berlin/Heidelber.

[15] Object Management Group (OMG) (2002). Meta Object Facility (MOF) Specification, version 1.4.
[16] Mogo, F., Weidlich, R. and Eigner M. (2008). Engineering Networks: A Concept for the Coequal Modeling of

Data and Processes in Product engineering, 10th International Design Conference (DESIGN 2008), Proceedings,
2:849–856, Dubrovnik/Croatia.

[17] Hidders, J., Dumas, M., van der Aalst, W. M., Hofstede, A. H. and Verelst, J. (2005). When are two workflows
the same, 11th Australasian symposium on Theory of computing, Proceedings, ACM International Conference
Proceeding Series, 105:3–11, Newcastle.




