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ABSTRACT 
This paper aims to situate Design by comparison to scientific modeling and optimal Decision. We 

introduce “generative functions” characterizing each of these activities. We formulate inputs, outputs 

and specific conditions of the generative functions corresponding to modeling (Gm), Optimization 

(Go) and Design (Gd): Gd follows the classic view of modeling as a reduction of observed anomalies 

in knowledge by assuming the existence of unknown objects that may be observed and described with 

consistency and completeness. Go is possible when free parameters appear in models. Gd bears on 

recent Design theory, which shows that design begins with unknown yet not observable objects to 

which desired properties are assigned and have to be achieved by design. On this basis we establish 

that: i) modeling is a special case of Design; ii) the definition of design can be extended to the 

simultaneous generation of objects (as artifacts) and knowledge. Hence, the unity and variety of design 

can be explained, and we establish Design as a highly general generative function that is central to 

both science and decision. Such findings have several implications for research and education. 
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1 INTRODUCTION: THE NATURE OF DESIGN THEORY 

 1. Research goals: in this paper, we aim to situate Design theory by comparison to Science as a 

modeling activity and to Decision as an optimization activity. To tackle this critical issue, we introduce 

and formalize generative functions that characterize these three activities. From the study of these 

generative functions we show that: i) modeling is a special case of design; and ii) Design can be seen 

as the simultaneous generation of artifacts and knowledge. 

2. Research motivation and background. Contemporary Design theories have reached a high level of 

formalization and generality (Hatchuel et al. 2011). They establish that design can include, yet cannot 

be reduced to, classic types of cognitive rationality (problem-solving, trial and error, etc.) (Dorst 2006; 

Hatchuel 2002). Even if one finds older pioneers to this approach, modern attempts can be traced back 

to Yoshikawa (1981) and have been followed by a series of advancements which endeavored to reach 

a theory of design that is independent of what is designed, and that can rigorously account for the 

generative (or creative) aspects of Design (Hatchuel et al. 2011). General Design Theory (Yoshikawa 

1981), Coupled Design Process (Braha and Reich 2003), Infused Design (Shai and Reich 2004), 

Concept-Knowledge (C-K theory) (Hatchuel and Weil 2009) are representatives of such endeavor. The 

same evolution has occurred in the domain of industrial design where early esthetic orientations have 

evolved towards a comprehensive and reflexive approach of design that seeks new coherence 

(Margolin 2009). Such academic corpus opens new perspectives about the situation of Design theory 

within the general landscape of knowledge and science: the more Design theory claims its universality, 

the more it is necessary to explain how it can be articulated to other universal models of thought well 

known to scientists. 

Still the notion of “Design theory” is unclear for the non-specialist: it has to be better related to 

standard forms of scientific activity. To advance in this direction this paper begins to answer simple, 

yet difficult, questions like: what is different between Design and the classic scientific method? Why 

design theory is not simply a decision theory? In this paper we focus on the relation between design, 

modeling and optimization; the latter are major and dominant references across all sciences.  

3. Methodology. Authors (Cross 1993; Zeng and Cheng 1991; Horvath 2004) have already attempted 

to position Design in relation with Science. Rodenacker (Rodenacker 1970) considered that Design 

consisted in: i) analyzing “physical phenomena” based on scientific modeling; and ii) “inverting” the 

logic by beginning with selecting a function and addressing it by using known physical models of the 

phenomena (see p. 22 in(Rodenacker 1970)). After WW2, Simon’s approach of the artificial proposed 

a strong distinction between science and design (Simon 1969). However, Simon’s Design theory was 

reduced to problem solving and did not capture specific traits of design (Hatchuel 2002; Dorst 2006). 

Farrell and Hooker (2012) criticized the Simonian distinction, considering that design and science 

have a lot in common. Still science and design are not specified with enough rigor and precision in 

these comparisons. Our aim is to reach more precise propositions about “scientific modeling” and 

“optimal decision” and to establish similarities and differences with design theory, at the level of 

formalization allowed by recent design theories.  

The core of this paper is the analysis of modeling, decision and design through generative functions. 

For each generative function we define its inputs and outputs, as well as the assumptions and 

constraints to be verified by these functions. This common formal language will help us establish the 

relations and differences between design theory, modeling theory and decision theory.  

4. Paper outline. Section 2 presents a formal approach of classic modeling theory and decision theory. 

Section 3 shows why Design differs from modeling and decision theory. Section 4 outlines differences 

in the status of the “unknown” in each case. We show that modeling can be interpreted as the design of 

knowledge. It establishes that science and decision are centrally dependent of our capacity to design.  

2 MODELING AND DECISION: UNKNOWN OBJECTS AS OBSERVABLES 

2.1 Modeling: anomalies and unknown objects 
The classic task of Science (formed in the 19

th
 Century), was to establish the “true laws of nature”. 

This definition has been criticized during the 20
th
 century: more pragmatic notions about Truth were 

used to define scientific knowledge, based on falsifiability (Poincaré 2007; Popper 1959); laws are 

interpreted as provisional “scientific models” (Kuhn 1962; McComas 1998; Popper 1959). The 

conception of “Nature” itself has been questioned. The classic vision of “reality” was challenged by 
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the physics of the 20
th
 century (Relativity theory, Quantum Mechanics). The environmental dangers of 

human interventions provoked new discussions about the frontiers of nature and culture.  

Yet, these new views have not changed the scientific method i.e. the logic of modeling. It is largely 

shared that Science produces knowledge using both observations and models (mostly mathematical, 

but not uniquely). The core of the scientific conversation is focused on the consistency, validity, 

testability of models, and above all, on how models may fit existing or experimentally provoked 

observations. To understand similarities and differences between Design theory and modeling theory, 

we first discuss the assumptions and generative function that define modeling theory. 

2.1.1  The formal assumptions of modeling 

Modeling is so common that its basic assumptions are widely accepted and rarely reminded. To outline 

the core differences or similarities between Modeling theory and Design theory, these assumptions 

have to be clarified and formalized. We adopt the following notations: 

- Xi is an object i that is defined by its name “Xi” and by additional properties.  

- Ki(Xi) is the established knowledge about Xi (e.g. the collection of its properties). Under some 

conditions described below, they may form a model of Xi  

- K(Xi) is the collection of models about all the Xis. At this stage we only need to assume that K 

follows the classic axioms of epistemic logic (Hendricks 2007) (see section 4). 

Still, modeling theory needs additional assumptions (these are not hypotheses; they are not discussed):  

A1. Observability of objects and independence from the observer. Classic scientific modeling 

assumes that considered objects Xi are observable: it means that the scientist (as the observer) can 

perceive and/or activate some observations xi about Xi. The quality and reliability of these observations 

is an issue that is addressed by statistics theory. These observations may impact on what is known 

Ki(Xi) and even modify some parameters of Xi i.e. some subsets of Ki(Xi) but it is usually assumed that 

observations do not provoke the existence of Xi, i.e. the existence of the Xis is independent of the 

observer. For instance in quantum mechanics, the position and momentum of a particle are dependent 

of the observation, not its existence, mass or other physical characteristics. (Here we adopt what is 

usually called the positivistic approach of Science. Our formalization also fits with a constructivist 

view of scientific modeling but it would be too long to establish it in this paper.) 

A2. Model consistency and completeness: K(Xi) is a model of the Xis if two conditions defined by 

the scientist are verified: 

- Consistency: the scientist can define a consistency function H, that tests K(Xi) (no 

contradictions, no redundant propositions, simplicity, unity, symmetry etc…):  

H(K(Xi)) true means K(Xi) is a consistent model. 

- Completeness: we call Y the collection of observations (or data coming from these 

observations) that can be related to the Xis. The scientist can define a completeness function D 

that checks (K(Xi)-Y):  

D(K(Xi)-Y) holds means that K(Xi) sufficiently predicts Y.  

Obviously, there is no universal formulation of H and D. Scientific communities tend to adopt 

common principles for consistency and completeness. For our research, what counts is the logical 

necessity of some H and D functions to control the progress of modeling.  

Notations: For the sake of simplicity, we will write: ∆H > 0 (resp. ∆D > 0) when consistency (resp. 

completness) of knowledge has increased. 

A3. Modeling aims to reduce knowledge anomalies. The modeling activity (the research process) is 

stimulated by two types of “anomalies” that may appear separately or together: 

- K(Xi) seems inconsistent according to H. For instance K(Xi) may lack unity or present 

contradictions. For instance Ockam’s razor is a criterion of economy in the constitution of K. 

- New observations Y appear or are provoked by an experiment, and do not fit, according to D, with 

what is described or expected by K(Xi). Or K(Xi) predicts observations Y
*
 that still never happened 

or are contradictory with available ones. For instance Higgs’s Boson was predicted by the 

standard theory of particles and was observed several decades after its prediction. 

A4. Hypothesizing and exploring unknown objects. Facing anomalies, the scientist makes the 

hypothesis that there may exist an unknown object Xx, observable but not yet observed, that would 

reduce the anomalies if it verifies some properties. Anomalies are perceived as signs of the existence 

of Xx, and the modeling process will activate two interrelated activities.  
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- The elaboration of K(Xx) will hopefully provide a definition of Xx and validate its expected 

properties. Optimization procedures can routinize such elaboration (Schmidt and Lipson 2009).  

- The expansion of Y, i.e. new provoked observations (experimental plans) may also increase 

information about (Xx, K(Xx)). 

Ideally, the two series should converge towards an accepted model Kx(Xx) that increases H and D. . 

This process may also provoke a revision of previous knowledge K(Xi) that we will note K’(Xi) in all 

the paper (revised knowledge on Xi). 

2.1.2 Some examples of scientific modeling 

Example 1 X-Rays. When the story of X rays begun, many objects were already known (modelled): 

electricity, light, electromagnetic waves, photography where common K(Xi) for scientists. Research 

was stimulated by the formation of a photographic anomaly Y: a photosensitive screen became 

fluorescent when Crookes tubes were discharged in a black room. Roentgen hypothesized the 

existence of an unknown radiation, Xx, that was produced by the Crookes tube and could produce a 

visible impact on photographic screens. It took a long period of work combining hypothesis building 

and experimental testing before X rays were understood and the photographic anomaly reduced. 

Example 2 New planets. We find a similar logic in the discovery of Neptune and then Pluto, the 

“planet X”. In the 1840s, astronomers had detected a series of irregularities in the path of Uranus, an 

anomaly Y which could not be entirely explained by Newton gravitational theory applied to the then-

known seven planets (the established K(Xi)). Le Verrier proposed a new model with eight planets 

(K’(Xi), K(Xx)) in which the irregularities are resolved if the gravity of a farther, unknown planet Xx 

was disturbing Uranus path around the Sun. Telescopic observations confirming the existence of a 

major planet were made by Galle, working from Le Verrier's calculations. The story followed the same 

path with the discovery of Pluto, which was predicted in the late 19
th
 century to explain newly 

discovered anomalies in Uranus’ trajectory (new Y). For decades, astronomers suggested several 

possible celestial coordinates (i.e. multiple possible K(Xx)) for what was called the “planet X”. 

Interestingly enough, even today astronomers go on studying other models K(Xx) to explain Uranus 

trajectory, integrating for instance new knowledge on Neptune mass, gained by Voyager 2's 1989 

flyby of Neptune.  

2.1.3 Corollary assumptions in modeling theory 

Modeling theory is driven by the criteria of consistency H and completeness D that allow detecting 

anomalies of knowledge before any explanation has been found. Hence, modeling needs the 

independence between Xx and the criteria that judge the consistency and completeness of K(Xi): H and 

D. This assumption is necessary because H(K(Xi) and D(K(Xi)-Y)) have to be evaluated when Xx is still 

unknown and its existence not warranted (only K(Xi) and Y are known). Still, as soon as (Xx, K(Xx)) are 

formulated, even as hypotheses, H and D can take into account this formulation. 

Finally, modeling can be described through what we call a generative function Gm. 

Definition: in all the following, we call generative function a transformation where the output contains 

at least one object (Xx, K(Xx)) that was unknown in the input of the function (Hatchuel et al. 2011) and 

which knowledge has been increased during the transformation. 

In the case of modeling, this generative function can be structurally defined as:   

Gm: (K(Xi), Y)  (K(Xx), K’(Xj)) 

under the conditions that: 

- D(K(Xi)-Y)) does not hold (i.e. there is an anomaly in the knowledge input of Gm) 

- H(K’(Xj)K(Xx)) - H(K(Xi))>0 or H>0 (i.e. the new models are more consistent than the previous 

ones) 

- D((K(Xi)  K’(Xj)  K(Xx))-Y) holds or D>0 (i.e. the new models better fit with the observations) 

The generative function Gm only acts on knowledge but not on the existence of modeled objects. It 

helps to detect the anomalies and reduce distance between knowledge and observations. 

2.2 Decisions and decidable parameters: models as systems of choice 
The output of a modeling process is a transformation of K(Xi) that includes a new model Kx(Xx) that 

defines an observable Xx and captures its relations with other Xis. A decision issue appears when this 

new object Xx can be a potential instrument for action through some program about Xx. 
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2.2.1. Models as programs 

The path from the discovery of a new object to a new technology is a classic view (yet limited as we 

will see in later sections) of design and innovation. This perspective assumes that K(Xx) can be 

decomposed into two parts: Ku(Xx) which is invariant and Kf(Xx) which offers free parameters (d1, 

d2,..,di) that can be decided within some range of variation.  

Example 3: X rays consisted in a large family of electromagnetic radiations, described by a range of 

wavelengths and energies. The latter appeared as free parameters that could be controlled and selected 

for some purpose. The design of specific X-rays artefacts could be seen as the “best choice” among 

these parameters in relation to specific requirements: functionality, cost, danger, etc. 

The distinction between Kf and Ku clarifies the relation between the discovery of a new object and the 

discovery of a decision space of free parameters where the designer may “choose” a strategy. Decision 

theory and/or optimization theory provide techniques that guide the choice of these free parameters.  

2.2.2 Optimization: generating choices  

The literature about Decision theory and optimization explores several issues: decision with 

uncertainty, multicriteria or multiple agents decision making, etc. In all cases, the task is to evaluate 

and select among alternatives. Classic “optimization theory” explores algorithms that search the “best” 

or “most satisficing" choices among a decision space which contains a very large number or free 

possibilities - a number so large that systematic exploration of all possibilities is infeasible even with 

the most powerful computers. In recent decades optimization algorithms have been improved through 

inspiring ideas coming from material science (simulated annealing) or biomimicry (genetic algorithms, 

ant based algorithms…). However, from a formal point of view, the departure point of all these 

algorithms is a decision space (K(Xx), D(dj), O(di)), where: 

- K(Xx) is an established model of Xx,  

- D(dj) is the space of acceptable decisions about the djs, which are the free parameters of Xx 

- O(dj) is the set of criteria used to select the “optimal” group of decisions D
*
(dj).  

The task of these algorithms can be seen as a generative function Go that transforms the decision space 

into D
*
(dj), which is the optimal decision.  

Go: (K(Xx), D(dj), O(dj))  D
*
(dj)  

so that D
*
(di)  D(dj) and O(D

*
(dj)) holds. 

(1) 

From the comparison of Gm and Go, it appears that they both generate new knowledge, but in a 

different way. Modeling may introduce new Xx when optimization only produces knowledge on the 

structure of K(Xx) from the perspective of some criterion O (If O was independent of Xx (for instance, if 

O is a universal cost function), it could be possible to integrate both functions in one unique modeling 

function including optimization Gm,o: (K(Xi), Y)  (K’(Xj), K(Xx), D
*
(dj)) where H, D and O hold. Yet, 

in most cases, O may depend on the knowledge acquired about Xx).  

We now compare these structural propositions to the generative function associated to Design theory.  

3 DESIGN: THE GENERATION OF NEW OBJECTS 

Intuitively, Design aims to define and realize an object Xx that does not already exist, or that could not 

be obtained by a deduction from existing objects and knowledge. This intuition has been formalized by 

recent design theories (Hatchuel et al. 2011). However, it mixes several assumptions that imply, as a 

first step of our analysis,  strong differences between Design and modeling and need to be carefully 

studied. In the next developments we will follow the logic of C-K design theory to formalize the 

generative function of Design (Hatchuel and Weil 2003; Hatchuel and Weil 2009).  

- Unknowness, desirability and unobservability 

Unknown objects Xx are necessary to modeling theory. Design also needs unknown objects Xx. 

According to C-K design theory, these objects do not exist and hence are not observable when design 

begins. They will exist only if design succeeds. Actually, when design starts, these objects are 

unknown and only desirable. How is it possible? They are assigned desirable properties P(Xx) and they 

form a concept (Xx, P(Xx)), where P is the only proposition that is formulated about the specific 

unknown Xx that has to be created by design. Similarly to the O of Go, P refers to a set of criteria to be 

met by Xx. Moreover, within existing K(Xi), the existence of such concept is necessarily undecidable 

(Hatchuel and Weil 2009). Xx is not assumed as an observable object like in modeling, thus it can be 

viewed as an imaginary object. In design, Xx is only partially imagined: design only needs that we 
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imagine the concept of an object, but its complete definition has to be elaborated and realized. This has 

important consequences for the generative function of Design. 

- Design as decided anomalies  

Like in modeling, we again assume K(Xi). Now, Design is possible only if between the concept (Xx, 

P(Xx)) and K(Xi) the following relations hold: 

- (K(Xi)P(Xx)) is wrong (i.e. what we know about Xis cannot imply the existence of Xx)  

- (K(Xi) (non (P(Xx)) is wrong (i.e. what we know about the Xis cannot forbid the existence of Xx).  

These relations mean that K(Xi) is neither a proof of the existence of Xx, nor a proof of its non-

existence. Hence, the existence of (Xx, P(Xx) is undecidable, yet desirable, under K(Xi).  

Remark: undecidability can be seen as the anomaly specific to Design. It is not an observed anomaly, a 

distance between observations and K(Xi); it is a decided anomaly created by the designer when she 

builds the concept (Xx, P(Xx)). This makes a major difference between modeling and design.  

- The generative function of design: introducing determination function 

Design theory is characterized by a specific generative function Gd that aims to build some K(Xx) that 

proves the existence of Xx, and P(Xx). As we know that K(Xi) cannot prove this existence, Design will 

need new knowledge. This can be limited to K(Xx) or, in the general case, this can require, like in 

modeling, to revise (Xi, K(Xi)) into (Xj, K’(Xj)) different from Xx. These (Xj, K’(Xj)) were also unknown 

when design began, thus design includes modeling. The generative function of design Gd is: 

Gd: (K(Xi), P(Xx)) (K’(Xj), K(Xx)) 

with the following conditions (two are identical for modeling and the third is specific to design):  

- ∆H ≥ 0 which means that Design creates objects that maintain or increase consistency 

- ∆D ≥ 0 which means that Design maintains or increases completeness  

- (K(Xi)  K’(Xj)  K(Xx))  ((Xx exists) and (P(Xx) holds)) 

The third condition can be called a determination function as it means that Design needs to create the 

knowledge that determines the realization of Xx and the verification of P(Xx). This condition did not 

appear in the generative function of modeling. We will show that it was implicit in its formulation. 

- Design includes decision, yet free parameters have to be generated  

Design could appear as a special case of decision theory: it begins with a decided anomaly and it aims 

to find some free parameters that, when “optimized”, will warrant P(Xx). However, the situation is 

different from the decision theory analyzed previously: when design begins the definition parameters 

of Xx are unknown, they have to be generated before being decided. 

- Design observes “expansions” i.e. potential components of Xx 

As mentioned earlier, when Design begins, Xx is not observable; it will be observed only when its 

complete definition will be settled, its existence warranted and made observable. So what can be 

observed during design if Xx still does not exist? We may think that we could observe “some aspects” 

of Xx. This is not a valid formulation as it assumes that Xx is already there and we could capture some 

of its traits. But Xx cannot be “present” until we design it and prove its existence. What can be, and is, 

done is to build new objects that could potentially be used as components of Xx. These objects can be 

called expansions Ci(Xx) (we use here the language of C-K design theory). Their existence and 

properties cannot be deduced from K(Xi), they have to be observed and modeled. Obviously if one of 

these expansions Cj(Xx) verifies P, it can be seen as a potential design of Xx. Usually, these expansions 

only verify some property P’ that is a necessary (but not sufficient) condition for P. By combining 

different expansions, Xx will be defined and P verified. The notion of “expansion” unifies a large 

variety of devices, material or symbolic, usually called sketches, mock-sup, prototypes, demonstrators, 

simulation etc. These devices are central for Design practice and are well documented in the literature 

(Goldschmidt 1991; Tversky 2002; Subrahmanian et al. 2003). Still they received limited attention in 

science (except in experimental plans) because they were absent of Modeling or Decision theory. 

Observing expansions generates two different outputs: i) some “building bricks” that could be used to 

form Xx; ii) new knowledge that will stimulate modeling strategies or new expansions. Thus, Gd can be 

formulated more precisely by introducing expansions in its output:  

Gd: (K(Xi), P(Xx)) (K’(Xj), Ci(Xx)) 

and some subgroup Cm of the expansions is such that Xx = ∩ Cm(Xx) and verifies P. 

- Gd does not generate a pure combination of Xis : design goes out of the box  

This is a corollary of all previous findings. Because Xx is unknown and undecidable when related to 

K(Xi), if a successful design exists, it will be composed of expansions that are different from any of the 

Xis (and outside the topology of the Xis). Hence, there is no combination of the Xis that would compose 
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Xx. Gd goes necessarily out of the Xis’ box! Creativity is not something added to design. Genuine 

design is creative by definition and necessity. 

Example 4: the design of electric cars. The use of electric power in cars is not a design task. It is easy 

to compose an electric car with known components. Design begins for instance with the concept: “an 

electric car with an autonomous range that is not too far from existing cars using fuel power”. 

Obviously, this concept was both highly desired by carmakers and undecidable some years ago. 

Today, it is easy to observe all the new objects and knowledge that have been produced in existing 

electric cars that are now proposed, thus observable: new architectures, new batteries technologies and 

management systems, new car heating and cooling systems, new stations for charging or for battery 

exchange… New types of cars have been also proposed like the recent Twizzy by Renault who won 

the Red Dot best of the best design award in 2012. Still, commercialized cars could be seen as only 

expansions of the concept as none of them has reached the same autonomy as existing fuel cars (circa 

700km). From a theoretical point of view commercial products are only economic landmarks of an 

ongoing design process. This example also illustrates the variety of design propositions, predicted by 

the theory. 

4 COMPARISON AND GENERALIZATION: DESIGN AS THE 

SIMULTANEOUS GENERATION OF ARTEFACTS AND MODELS 

Now we can compare similarities and differences between Design, modeling and Decision theories. 

Table 1 synthesizes what we have learned about their generative functions. 

Table 1 : Comparison of generative functions 

Generative 

function 

Modeling: Gm Decision: Go Design: Gd 

Status of the 

unknown 

Xx is unknown, yet observable 

and independent, Y forms an 

anomaly 

 Xx presents free parameters 

to be decided, optimum is 

unknown 

Xx is unknown, assigned 

properties desirable, not 

observable,  

Input (K(Xi), Y) 

Y not explained by Xis 

(K(Xx), D(di), O(D
*
(di))) (K(Xi), P(Xx)) 

P(Xx) undecidable / K(Xi) 

Output K’(Xj), K(Xx)  D
*
(di) K’(Xj), K(Xx)  

Conditions  - consistency ∆H > 0 

- completeness ∆D > 0 

 

O(D
*
(dj)) holds. 

 

∆H ≥ 0 

∆D ≥ 0 

Determination: (Xx exists) 

and (P(Xx) holds) 

4.1 Discovery, invention and the status of the unknown 
One can first remark the structural identity between the outputs of Gd and Gm. It explains why it is 

actually cumbersome to distinguish between “invention” and “discovery”: in both cases, a previously 

unknown object has been generated. Yet this distinction is often used to distinguish between science 

and design. The difference appears in the assumptions on the unknown in each generative function: in 

modeling, the unknown is seen as an “external reality” that may be observed; in design, it is a 

desirable entity to bring to existence. The structure of the generative functions will show us that these 

differences mask deep similarities between modeling and Design. 

4.2. Modeling as a special form of Design  
We can now reach the core of our research by examining how these generative functions can be 

combined. Three important findings can be established.  

Proposition 1: Design includes modeling and decision. This is obvious from the structure of Gm.  

Proof : Design needs to observe and test expansions as potential components of Xx: 

Gd: (K(Xi), P(Xx)) (K’(Xj), Ci(Xx)) so that Xx = ∩ Cm(Xx) and verifies P. 

If for some Xu =∩Cm(Xx), P(Xu) does not hold, (non-P(Xu)) can be interpreted as an observed anomaly. 

Let us set: Y=non-P(Xu), Y appears as a provoked observation; if K(Xu) is the available knowledge 

about Xu, then Gd leads to a modeling issue corresponding to the following generative function: (K(Xu), 

Y) (K’(Xj), K(Xz)) where Xz is a new unknown object that has to be modeled and observed. 

Example 5: Each time when a prototype (∩Cm(Xx)) fails to meet design targets, it is necessary to build 

a scientific modeling of the failure. One famous historical example occurred at GE Research in the 
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1920s where Langmuir study of light bulb blackening led to the discovery of plasma, which owed him 

Nobel prize in 1932 (Reich 1985).  

Proposition 2: Modeling needs design. This proposition seems less obvious: where is design in the 

reduction of anomalies that characterizes modeling? Actually Design is implicit in the conditions of 

the generative function of modeling: D((K(Xi)  K(X’j)  K(Xx))-Y) holds.  
Proof: This condition simply says that adding K(Xx) to available knowledge explains Y. Now to check 

this proposition may require an unknown experimental setting that should desirably fit with the 

requirements of D. Let us call Ex this setting and Dr(Ex) these requirements. Hence, the generative 

function of modeling Gm: (K(Xi), Y)  (K(Xx), K’(Xj)) is now dependent on a design function: Gd: 

(K(Xi), Dr(Ex)) (K’(Xj), K(Ex)) 

Example 6: There are numerous examples in the history of science where modeling was dependent on 

the design of new experimental settings (instruments, machines, reactors,…). In the case of the Laser, 

the existence of this special form of condensed light was theoretically predicted by Einstein as early as 

1917 (a deduction from available K(Xi)). Yet, the type of experimental “cavity” where the phenomena 

could appear was unknown and would have to meet extremely severe conditions. Thus, the 

advancement of knowledge in the field was dependent on Design capabilities (Bromberg 1986).  

Proposition 3: Modeling is a special form of Design 

This proposition will establish that in spite of their differences, modeling is an implicit Design. Let us 

interpret modeling using the formal generative function of Design. Such operations are precisely those 

where the value of formalization is at its peak. Intuitively modeling and Design seem two logics with 

radically different views of the unknown; yet structurally, modeling is also a design activity.  

Proof: we have established that the generative function of modeling Gm is a special form of Gd.  

Gm: (K(Xi), Y)  (K’(Xj), K(Xx)) with the conditions : 

a. D(K(Xi)- Y) does not hold  

b. H(K’(Xj)K(Xx)) - H(K(Xi))>0 

c. D((K(Xi)  K’(Xj)  K(Xx))-Y) holds.  

Now instead of considering an unknown object Xx to reduce the anomaly created by Y, let us consider 

an unknown knowledge Kx (note that we do not write K(Xx) but Kx). In addition, we assume that Kx 

verifies the following properties b’ and c’ which are obtained by replacing K(Xx) by Kx in conditions b 

and c (remind that condition a is independent of Kx and thus is unchanged ):  

b’: H(K’(Xj)Kx) - H(K(Xi))>0  

c’: D((K(Xi)  K’(Xj)  Kx))-Y) holds.  

Remark that Kx, like Xx, is unknown and not observable, it has to be generated (designed). If we set a 

function T(Kx) that is true if “(b’ and c’) holds” then Gm is equivalent to the design function: 

Gd: (K(Xi), T(Kx)) (K’(Xj), Kx) 

Proof: if design succeeds then T(Kx) is true; this implies that c’ holds i.e. Kx reduces the anomaly Y. 

Thus, modeling is equivalent to a design process where the generation of knowledge is designed.  

Conditioning the “realism”of Kx: with this interpretation of modeling, we miss the idea that Kx is 

about an observable and independent object Xx. Design may lead to an infinite variety of Kx which all 

verify T(Kx). We need an additional condition that would control the “realism” of Kx. “Realism” was 

initially embedded in the assumption that there is an observable and independent object. Now assume 

that we introduce a new design condition V(Kx) which says: Kx should be designed independently from 

the designer. This would force the designer to only use observations and test expansions (for instance 

knowledge prototypes) that are submitted to the judgment of other scientists. Actually, this condition is 

equivalent to the assumption of an independent object Xx. Proof: to recognize that Xx exists and is 

independent of the scientists, we need to prove that two independent observers reach the same 

knowledge K(Xx). Conditioning the design of Kx by V(Kx) is equivalent to assuming the existence of an 

independent object. This completes our proof that modeling is a special form of Design.  

4.3 Generalization: design as the simultaneous generation of objects and knowledge  
Design needs modeling but modeling can be interpreted as the design of new knowledge. Therefore we 

can generalize design as a generative function that simultaneously applies to a couple (Xx, K(Xx)): 

- Let us call, Zi = (Xi, K(Xi)), Zx = (Xx, K(Xx)),  

- In classic epistemic logic, for  all U: K(K(U))= K(U) this only means that we know what we know; 

and as K(Xx)Xx then K(Xx, K(Xx))=(K(Xx), K(K(Xx)) according to the distribution axiom 

(Hendricks 2007), which means that K is consistent with implication rules.  
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- Then, K(Zi) = K(Xi, K(Xi)) = (K(Xi), K(K(Xi)) = (K(Xi), K(Xi)) =K(Xi) ; and similarly K(Zx) =K(Xx) 

- the generalized generative function Gdz can be written with the same structure as Gd: 

Gdz: (K(Zi), L(Zx)) (K’(Zj), K(Zx))  

Where L(Zx) is the combination of all desired properties related to the couple (Xx, K(Xx)): 

- Assigned property to Xx: P(Xx) 

- Conditions on K(Xx): consistency ∆H > 0; completeness ∆D > 0 

Example 7: there are many famous cases where new objects and new knowledge is generated, e.g. the 

discovery of “neutral current” and the bubble chamber to “see” them at CERN in the 1960s (Galison 

1987), or DNA double helix and the X-ray diffraction of biological molecules, needed for the 

observation (Crick 1988).  

This result establishes that the generative function of design is not specific to objects or artefacts. The 

standard presentations of modeling or design are partial visions of Design. Confirming the orientation 

of contemporary Design theory, our research brings rigorous support to the idea that Design is a 

generative function that is independent of what is designed and simultaneously generates objects and 

the knowledge about these objects according to the desired properties assigned to each of them.  

5  CONCLUDING REMARKS AND IMPLICATIONS  

1. Our aim was to situate design and design theory by comparison to major standard references like 

scientific modeling and Decision theory. To reach this goal, we have not followed the classic 

discussions about science and design. Contemporary design theory offers a new way to study these 

issues. It has reached a level of formalization that can be used to organize a rigorous comparison of 

design, modeling and optimization. We use this methodology to reach novel and precise propositions. 

Our findings confirm previous research that insisted more on the similarities between Design and 

Science. But it goes beyond such general statements: we have introduced the notion of generative 

functions which permits to build a common formal framework for our comparison. We showed that 

design, modeling and decision correspond to various visions of the unknown. Beyond these 

differences, we have established that modeling (hence optimization) could be seen as special forms of 

design and we have made explicit the conditions under which such proposition holds. Finally we have 

established the high generality of Design that simultaneously generates objects and knowledge. 

These findings have two series of implications, which are also areas for further research:  

2. On the unity and variety of forms of design: tell us what is that unknown that you desire…  

Establishing that design generates simultaneously objects and knowledge clarifies the unity of design. 

Engineers, Scientists, Architects, product creators are all designers. They do not differ in the structure 

of their generative functions, they differ in the desired properties they assign to the objects (or 

artifacts) and in the knowledge they generate. Scientists desire artefacts and knowledge that verify 

consistency, completeness and determination. They tend to focus on the desires of their communities. 

Engineers give more importance to the functional requirements of the artefacts they build; they also 

design knowledge that can be easily learned, transferred and systematized in usual working contexts. 

Architects have desires in common with engineers regarding the objects they create. But they do not 

aim at a systematized knowledge about elegance, beauty or urban values. Professional identities tend 

to underestimate the unity of design and tend to overemphasize the specificity of their desires and to 

confuse it with the generative functions they have to enact. This has led to persistent 

misunderstandings and conflicts. It has also fragmented the scientific study of design. It is still 

common to distinguish between “the technology and the design” of a product – as if generating a new 

technology was not the design of both artefacts and knowledge. Our research certainly calls for an 

aggiornamento of the scientific status of Design where its unity will be stressed and used as a 

foundation stone for research and education. 

3. On the relations between Science and Design 

In this paper we avoid the usual debates about the nature of Science, knowledge and Design. We add 

nothing to the discussions on positivist and constructivist conceptions of reality. Our investigations 

focus on the operational logic and structure of each type of activity. We find that the status of the 

unknown is a key element of the usual distinction between design-as-artifact-making and Science-as-

knowledge-creation. Still we also establish that Design offers a logic of the unknown that is more 

general and includes the logic of scientific Knowledge. Design makes explicit what it desires about the 

unknown. We establish that Science also designs knowledge according to desires but they are implicit 

or related to a community (not to the unique judgment of one researcher). Obviously, these findings 
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should be better related to contemporary debates in epistemology and philosophy of Science. This task 

goes largely beyond the scope of this paper. 

Finally, our main conclusion is that Design theory can serve as an integrative framework for modeling 

and decision. By introducing desirable unknowns in our models of thought, Design does not create 

some sort of irrationality or disorder. Instead it offers a rigorous foundation stone to the main 

standards of scientific thinking. 
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