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Abstract 

Nowadays, the efficient execution of product design and process planning activities with-

out the extensive use of Finite Element (FE) simulation is hardly conceivable. The ability 

to virtually test components at an early stage can reduce costs while significantly 

increas-ing product quality. In addition, the current business environment promotes 

ever shorter development times coupled with a greater variety of products. This 

combination poses the risk that more and more inexperienced users from the field of 

product design have to perform simulation and validation tasks. An idea to support the 

less experienced users is to automatically check their FE models and simulations for 

plausibility. This helps to con-duct simulations independently by alerting the designers 

when major errors occur. One approach to the automatic plausibility check of FE 

simulations utilizes simulations that have already been calculated as a database and 

applies them to train a Deep Learning model that classifies the new simulations into 

plausible and non-plausible. This requires converting the existing data into a uniform 

format by the projection method, so it is read-able for a Deep Learning network. 

However, for this method to be applied in an industrial environment, a high recognition 

accuracy is required for unknown simulations. Therefore, the goal of this paper is to in-

vestigate the ability of a new Deep Learning architecture to check the plausibility of FE 

simulations. The objective is to achieve the highest possible recognition accuracy. So far, 

mainly serial network types have been used for this procedure, which will now be ex-

tended by the application of ResNet networks. These have different paths in their struc-

ture through the addition of skip-connections, allowing for a theoretically better-trained 

model. This will be analysed together with a new dataset of simulations. These components 

for the structural mechanical simulation are geometrically varied and served to evaluate 

the new network types and their achieved accuracy. 

Keywords: data mining, structural analysis, data driven design, Deep Learning, Plausibility 

checks 



1 Introduction  

The need for shorter development times, caused by a growing variety of product variants and a 

decreasing time to market (Kadam and Apte, 2016), forces many CAD designers to take over 

product simulation and validation tasks. Accordingly, Finite Element (FE) simulations in vir-

tual product development are increasingly performed by users without in-depth FE know-how 

for the simulative evaluation of product behaviour (Kestel et al. 2019). At the same time, the 

amount of simulation data is expanding due to more powerful computational capabilities and 

available data storage. This existing data is often stored for legal reasons only and is not further 

utilized as it could be. 

An automatic plausibility check of FE simulations to detect gravely wrong results is conse-

quently a promising digital support tool for the virtual product development. It allows previ-

ously calculated and validated simulations to be used to provide feedback to the simulation 

user, enabling the less-experienced employees to create and iterate FE simulations inde-

pendently. After the iteration, calculation experts take over the final validation of the product 

without unnecessary iteration loops between simulation and design departments.  

When classifying FE simulations into plausible and non-plausible, numerous influencing vari-

ables must be taken into account since the relationships between the input variables and the 

target variables of a numerical calculation are often complex and non-linear. Especially the 

inhomogeneous data structure from FE simulations poses a problem for the automatic analysis 

of simulations. For this reason, the paper aims to improve an existing method for plausibility 

checking through a higher classification accuracy of the prediction, thereby increasing the ap-

plicability of the technique. 

2 State of the art  

There are several methods to improve the quality of FE simulations for specific domains. Ex-

amples are the SACON system of Bennett et al. (1978), which improves the development of 

wings for the Boeing 747, or the method presented by Johansson (2008) for the rotary draw 

bending of aluminium tubes. In contrast to a domain specific method, developed Spruegel et al. 

(2015)  an approach for classifying FE simulations according to their plausibility which was 

further improved through Spruegel et al. (2021). The general idea is to provide a system that 

classifies a calculated simulation into plausible and non-plausible. In the context of finite ele-

ment simulation, the term plausibility has been described by Spruegel et al. (2015) as a FE 

simulation that does not contain any obvious errors, which an experienced calculation engineer 

would recognize immediately. These include wrongly attributed units (e. g. bar and MPa), miss-

ing bearings or too coarse meshing or too high target values of the investigated component. The 

term plausibility is very well described by the English term "likely valid".  

The first step in the method is the preparation of the calculated FE simulations. These must be 

converted to a standardized structure so that a neural network can process them. In this context, 

the method presented in Spruegel et al. (2016) projects the nodes from the center point onto a 

detector sphere, which is divided into several regions, similar to the longitudes and latitudes on 

a globe. The resulting areas are called pixels and all projected results are evaluated for each 

pixel. After the projection onto the sphere, it is unfolded like a world map, providing a matrix 

as a result. The projection is performed for the different elements of a simulation; this includes 

the mesh, the boundary conditions, the stress and deformation results. Each parameter is trans-

ferred to its own matrix, which is then arranged channel-wise, comparable to an RGB image. 

Figure 1 illustrates the entire process of the plausibility check. After an experienced FE simu-

lation engineer has labelled the results, the matrices form the database for training the Deep 

Learning model.  



 
Figure 1: Overview of the plausibility-check method according to Spruegel et al. (2021) 

The accuracies achieved in the publication of Spruegel et al. (2021) were high in some instances 

but should be further improved. The best result in Spruegel et al. (2021) could be generated by 

the own normalization of the data, which depends on the orientation of the components. Con-

sequently, problems can occur, especially when comparing data across components. However, 

for a more general applicability of the method, new components should be investigated first. 

Currently, three geometric types have been investigated in different FE simulation parameter 

studies so far: bulky, planar and round/long. Consequently, this analysis focuses on components 

that are round but short and secondly less planar.  

Besides providing a more extensive part database, the current paper explores the potential for 

higher classification accuracies by investigating a more general data normalization technique 

and by applying a new network type, ResNet models, to the task of detecting the plausibility of 

FE simulations. Increasing the recognition accuracy and with it the method's reliability for de-

tecting the plausibility of simulations, leads to the method being able to be transferred to indus-

trial applications in the future.  

3 Deep Learning architecture 

The presented task, the classification of FE simulations, is well suited for machine learning 

methods. As a result of the uniform data processing, Convolutional Neural Networks (CNN) 

are particularly appropriate since they were developed to recognise images. CNNs use the vis-

ual cortex as a template and model its functioning with different neurons, processing, and pool-

ing layers. Convolutional Neural Networks are a particular form of artificial neural networks 

and their name addition refers to a convolution that takes place before the actual neural network 

to filter more information from the data.  

CNNs can be categorized as Deep Learning, a subcategory of Machine Learning (ML). Deep 

Learning differs from Machine Learning through the way of generating the relevant features 

for the model training. In a classic ML model, the developer specifies these features, whereas 

a Deep Learning model creates them independently. 

3.1 Methodical background 

One of the first successful applications of CNNs was the recognition of handwritten numbers 

by the LeNet of Lecun et al. (1998). With the increasing computer power from 2010 onwards, 

it was possible to use CNNs practically and beneficially. The AlexNet from Krizhevsky et al. 

(2012) subsequently attracted particular attention with its results at an image detection compe-

tition in 2012. Compared to the LeNet, the AlexNet has significantly more layers and is suitable 

for higher resolution images. Two years later, an even deeper network, vgg16, was presented 

by Simonyan et al. (2014), which successfully participated in an image recognition competition. 



These three CNN types are all serial, which forces the network to pass through all layers in 

sequence.  

In theory, deeper networks should adapt better to a given task because the parameter space for 

adaption increases, but the achieved accuracy tends to saturate and then degrades, according to 

Srivastava et al. (2015). A possible approach to solving this problem was to incorporate multi-

ple paths in a CNN. One of the first implementations was the ResNet of He et al. (2015). This 

kind of CNN aimed to solve the problem of the vanishing gradient by using a so-called residual 

block. An example of this network extension is provided in Figure 2. 

 

Figure 2: Example of a residual building block according to He et al. (2015) 

The idea is to add residual mapping to the CNN model instead of an unreferenced mapping. For 

the execution in the CNN model, shortcut connections were built into the model, which execute 

identity mapping. Following this, the results of the skip connection and the stacked layers are 

added. The application of this type of network has demonstrated that image recognition accu-

racy increases significantly in many competitions and benchmarks. Therefore, this type of net-

work will be applied to classify FE simulations and compared with a serial network. 

3.2 Adaption for plausibility checks 

A structure based on the vgg16 was chosen as a comparison model to the ResNet CNN. In the 

publication of Spruegel et al. (2021), this network type is also applied. In this study, however, 

a less deep variant is adopted. Figure 3 shows the linear structure of this network architecture. 

The vgg16-derivative uses five convolution layers, each followed by a ReLU (Rectified Linear 

Unit) layer. A max pooling layer is utilized three times and a drop out is inserted for each of 

the fully connected layers at the end. 

The comparison with the ResNet highlights the difference between the two types of networks. 

The new CNN layout with skip connections consists of six simple blocks, called convUnit in 

the figure, each containing a convolution, batch normalization, ReLU activation, convolution, 

and batch normalization layer. The last ReLU layer connects the two paths again. The filter size 

is 3x3 and the values in the square brackets describe the number of filters and the stride for the 

convolution layer. Two blocks need an extra skip convolution layer so that the results have the 

same format when merging. Figure 3 again summarizes the structure of the two networks and 

shows the feature vectors generated per layer in each case. 

Both networks are adapted to handle the 100 x 100 x 20 input and the high number of additional 

channels. In the first layer, called the input layer, a normalization between zero and one is au-

tomatically performed in both networks. The available hardware was also taken into account 

when setting up the network and therefore rather shallower networks were chosen, especially 

with regards to the vgg16-derivative. After the description of the CNN setup, the FE simulations 

for analysing the different networks are then explained. 



 

Figure 3: Comparison of both network architectures adapted for channel-wise input 

4 Demonstrators 

In order to test the application of the two CNN architectures, a demonstrator dataset consisting 

of two components has been created. The two parts form the basis for the structural mechanics 

simulations. To verify the method as thoroughly as possible, one component is kept round and 

short, whereas the other is flatter and thinner. This intends to represent different basic geometric 

shapes, which can also vary in simulations in an industrial application. The selected components 

are a vehicle rim and a brake lever for a bicycle. These parts are chosen because they have 

several unique characteristics for a parametric study, such as complexity of geometry, good 

derivation of the load case, available material data and a sustainable number of parameterizable 

quantities. The following two subchapters present the components and the generation of the 

entire dataset in detail. 

4.1 Car rim 

The first new component for a parameter study is an automobile rim. A car rim acts as a link 

between the tire and the rest of the vehicle. It must absorb a correspondingly high force due to 

the vehicle weight and driving motions. Rims are often made of steel or light metals such as 

aluminum or magnesium. They can be screwed, welded or forged and their dimensions are 

usually standardized (e.g., diameter or width). The design of the rims can have purely visual 

reasons, however, the goal is often to minimize the rim weight in order to keep the unsprung 

masses as low as possible. 

In order to build the database, the first step is designing the component in CAD using PTC Creo 

with great attention to the parameterization of the geometry. A total of eight geometry param-
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eters are defined, which control the following dimensions: offset, bolting thickness, overall di-

ameter, rim width, spoke thickness and width / height for the narrow and wide cutouts respec-

tively. The drawings in Figure 4 display the different geometrical parameters.  

 

Figure 4: Geometrical parameters for the car rim 

The simulation model is based on the rotary fatigue test according to Wang et al. (2011) and 

Jape et al. (2016). In this test, the rim is rotated and subjected to a moment to represent the loads 

during cornering. According to the SAE standard, the test setup comprises a rotating table and 

an axle connected to the rim. A constant force is applied to this axis, which can be calculated 

using the following equation. 

 

𝑀 = ((𝜇 ∗ 𝑅) + 𝑑) ∗ 𝐹 ∗ 𝑆 

 
with M = Bending Moment, µ = Friction Coefficient, R = Radius Tire, d = Offset Rim, F = Maximum 
Load, S = Coefficient specified by Standards 
 

To simplify the parameter study, a constant force has been defined for all rim sizes. A fixed 

constraint is defined on the rim flanks and the boreholes have been selected as the force appli-

cation point. Furthermore, the rotation is represented over eight different load steps, with the 

applied force rotating around the center of the rim in 45 ° steps in each case. Figure 5 displays 

the setup of the simulation with all boundary conditions. 

 

Figure 5: Setup of the FE simulation for the car rim with all eight load cases displayed 



4.2 Bike Brake lever 

The second part is a brake lever for a bicycle. The component is generally more planar and 

slimmer than the car rim. The lever transmits the force applied by the rider's hand to the brake 

shoes. For this purpose, a steel Bowden cable or hydraulic lines are often used. The demonstra-

tor is a brake lever with a steel cable. The lever is pulled towards the rider to apply the brake, 

which tensions the steel cable and presses the brake shoes against the bicycle hub. For this 

purpose, the lever is pivoted so when the brake force is applied, the lever moves in a circular 

path. 

Often brake levers are made of light metals, and their shape is adapted to the application. For a 

standard city bike, the length of the levers usually corresponds to a hand width, whereas for 

mountain bikes, the width of the lever is much shorter, usually half a hand width or less. Also, 

the thickness, curvature and possible cutouts depend on the intended use and targeted product 

cost. 

Before setting up the simulation, the part is designed in CAD with multiple geometrical param-

eters. A total of eight parameters are applied to the model: the handle length and angle, the 

diameter of the bearing and the cable application point, the distance between the bores, the 

thickness of the neck, the total thickness and the wall thickness of the cutout. An example of 

different geometric variations and the representation of the geometry parameters are shown in 

Figure 6. 

 

Figure 6: Example of the brake lever with different geometrical parameters 

The FE simulation of component is modelled according to the German Institute for 

Standardization (DIN, 2014). This norm specifies both the force location and value that a brake 

lever must encounter. A value of 450 N is specified for a brake lever of this type. The gripping 

surface is defined as the force application area. A fixed support is applied at the bore for the 

brake cable. The pivot point of the lever is determined as a cylindrical bearing. Figure 7 illus-

trates the entire structure of the simulation, including the boundary conditions.  

 

Figure 7: Setup of the brake lever simulation 



4.3 Parameter study 

To further build the database for the plausibility checks, parameter studies have subsequently 

been performed for both simulations. For the implementation, a d-optimal experimental plan 

was first created, containing all parameters of the respective simulation model. Besides the ge-

ometry parameters, the meshing and load values can also be controlled by parameters. Each 

experimental plan comprises 10.000 simulations, whereby for the brake lever, this also corre-

sponds to 10.000 design points (dp); for the vehicle rim it takes 1.250 design points since eight 

load cases are calculated per dp. An APDL script saves the results for each simulation as a text 

file, including the stresses, deformations, boundary conditions and the general mesh. Table 1 

lists all other relevant information about the dataset. 

 
Table 1: General information about the demonstrator study 

Dataset 

Number of 

simulations 

in DOE 

Successful 

simulations 
Plausible 

Non- 

plausible 

Storage 

space 

Vehicle rim 10.000 9.954 5.894 3.964 676 GB 

Brake lever 10.000 9.858 3.734 6.230 574 GB 

Whole 

dataset 
20.000 19.812 9.628 10.194 1.250 GB 

 

The entire dataset ends up with 19.812 simulations, of which 9.628 are labelled as plausible and 

10.194 as non-plausible. The labelling was conducted through a combination of automated (e.g. 

rule-based for too high force values) and manually labelling. Subsequently, the dataset is ran-

domly split into training and test data for each demonstrator, in a ratio of 80/20. This data is 

then used to compare how well the different network architectures predict the plausibility for a 

simulation. According to the method described in section 2, all simulations are projected onto 

a 100 x 100 matrix, with 20 matrices per simulation are used. This adds up to an input for the 

CNN model of 100 x 100 x 20.  

5 Comparison between two network types 

The evaluation metric for comparing the two network architectures is the classification accu-

racy. This metric is calculated for the three datasets: the training, validation, and test dataset. 

The equation for measuring the accuracy according to Fawcett (2006) and Powers (2011) is: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 
with True Positive (TP), True Negatives (TN), False Positive (FP) and False Negatives (FN). 
 

The test accuracy is particularly relevant since it is entirely unknown to the trained model. All 

training and evaluation steps were performed on a workstation PC with an Intel Xeon W-2125, 

32 GB RAM and an Nvidia Titan V. 

The different network models have been defined according to the setup from section 3.2 and 

trained with slight adjustments to the hyper-parameters, which are listed in Table 2. It was 

especially noticeable that the learning rate has a high influence on the achieved accuracy of the 

trained networks. 

 



Table 2: Overview of the applied hyper-parameters for both network-architectures 

Model 
Mini-Batch 

Size 

Initial 

Learn Rate 
Solver 

Shuffle 

Dataset 

Learn Rate 

Drop Factor 

Vgg16-derivate 64 0.0001 adam every-epoch - 

ResNet-deri-

vate 
128 0.001 sgdm every-epoch 0.1 

 

The results of the evaluation for both networks are presented in Table 3. For the evaluation, 

five models per network type were trained with the same hyper-parameters and then evaluated. 

In Table 3 the arithmetic means of the accuracy for training, validation and test dataset are 

presented. 
Table 3: Average accuracy over five trained models for each CNN type 

Model 
Accuracy 

Training Validation Test 

Vgg16-deri-

vate 
98,73 % 98,64 % 98,72 % 

ResNet-

derivate 
99,98 % 99,99 % 99,98 % 

 

The results consistently show a very high classification accuracy for both network architectures, 

through all datasets. This is a good sign if different network types work with one dataset, sup-

porting the plausibility check method. The accuracy variation among the three datasets is rela-

tively small, which indicates that there is no overfitting of the models. The vgg16-based model 

achieves an accuracy of 98.72 %, while to the ResNet network reaches an even higher accuracy 

of 99.98 % on average. This demonstrates that the ResNet model, in combination with the nor-

malization of the data, was able to achieve a better classification result than the vgg16 model. 

This demonstrates that the new network architecture works for an input with multiple channels, 

derived from FE simulations. 

Nevertheless, the next step should be to investigate further the validity of this finding, primarily 

through several more simulation parameter studies. Especially the generalizability to different 

components in one training dataset, is particularly relevant for the application of the method.  

6 Conclusion and outlook  

In summary, this paper examined two Deep Learning models for classifying two different FE 

simulations according to their plausibility. A model based on vgg16 was compared with a 

ResNet model. Two parameter studies were generated to investigate better the different 

architectures, each containing about 10.000 simulations. 

The achieved accuracies show that the plausibility could be classified very precisely, even for 

a dataset with simulations from different domains. However, only the general plausibility of the 

simulations is determined and detailed feedback could not be provided as application-specific 

systems can. Nevertheless, the achieved result provides the basis for subsequent investigations, 

where simulations are classified according to a more specific reason for the non-plausibility, 

for example, a too large element size or wrong force values. Furthermore, it would be feasible 

to define a score for plausibility, similar to a percentage value or transform it into a traffic light 

system. For this purpose, the result before the softmax layers of the fully connected layer could 

be used as the initial result. In addition, the general idea of plausibility checks could be 

expanded to assemblies or other simulation types like CFD or modal analysis.  
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