Data Driven Product Portfolio Analysis of Electric Motors Based on Product Platforms Using Knowledge-Based Systems

DS 94: Proceedings of the Design Society: 22nd International Conference on Engineering Design (ICED19)

Year: 2019
Editor: Wartzack, Sandro; Schleich, Benjamin; Gon
Author:
Series: ICED
Institution: Friedrich-Alexander-Universit
Section: Knowledge-based engineering
DOI number: https://doi.org/10.1017/dsi.2019.260
ISSN: 2220-4342

Abstract

For a company it is necessary to know, which products can be configured using carry-over-parts or the same technology. This can become quite relevant in the context of automobile electrification, where complex mechatronic systems are used. Consisting of various mechanical components, these systems perform the required function while being actuated by electronically controlled motors. To solve this, a novel mechanism for data driven portfolio analysis based on product platforms using knowledge-based systems is proposed in this paper. Further, the mechanism is tested by applying it to an electrical motors' case study. Using this method, all possible combinations of a product platform are calculated and finally displayed in different product portfolios. Additionally, all the non-feasible motor designs are removed from the solutions portfolio using the acquired knowledge base and performing design checks. The latter are employed for penalising and eliminating from the pareto-front of the designs, which violate the thermal, mechanical and acoustic constraints. The generated product portfolio can be used further to expand the systems engineering collaboration and support decision-making.

Keywords: Knowledge-Based Systems, Electric Motors, Platform strategies, Portfolio management, Knowledge management

Download

Please sign in to your account

This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties. Privacy Policy.