Influence of gas-filled gaps on the thermal behaviour of Dual Purpose Casks

DS 94: Proceedings of the Design Society: 22nd International Conference on Engineering Design (ICED19)

Year: 2019
Editor: Wartzack, Sandro; Schleich, Benjamin; Gon
Author: Dinkel, Christian (1); Billenstein, Daniel (1); Rieg, Frank (1); Roith, Bernd (2)
Series: ICED
Institution: University of Bayreuth
Section: Design methods and tools
DOI number:
ISSN: 2220-4342


Basically, the safe dissipation of heat is among others an important protection objective of dual purpose casks. Gas-filled gaps within such casks can play a major role for the thermal behavior as they act as thermal barriers due to the lower heat conductivity of gaseous fluids in comparison to metallic materials. However, additional heat transmission mechanisms, such as natural convection and radiation can also occur in a gaseous medium. This leads to both an expanded modelling and a prolonged computing time in numerical simulations. Within the scope of a research project in cooperation with Swiss Federal Nuclear Safety Inspectorate ENSI a simulation tool for the fast thermal evaluation of dual purpose casks is developed which combines analytical methods and FEA. The innovation is that the thermal effects of gas-filled gaps are considered by using analytical equations. Main focus lies on the implementation of heat radiation as a non-linear transfer mechanism. Therefore, an iterative calculation process is used and the effects of the iteration number is investigated. Furthermore, the influence of radiation in comparison to pure conduction is examined depending on the gap width.

Keywords: Simulation, Product modelling / models, Numerical methods, Thermal Finite-Element Analysis, Dual purpose cask


Please sign in to your account

This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties. Privacy Policy.