Model for evaluating additive manufacturing feasibility in end-use production

DS 94: Proceedings of the Design Society: 22nd International Conference on Engineering Design (ICED19)

Year: 2019
Editor: Wartzack, Sandro; Schleich, Benjamin; Gon
Author: Ahtiluoto, Matti (1); Ellman, Asko Uolevi (2); Coatanea, Eric (2)
Series: ICED
Institution: Tampere University of Technology
Section: Design for additive manufacturing
DOI number:
ISSN: 2220-4342


In practical design work, a designer needs to consider the feasibility of a part for a manufacturing using additive manufacturing (AM) instead of conventional manufacturing (CM) technology. Traditionally and by default parts are assumed to be manufactured using CM and using AM as an alternative need to be justified. AM is currently often a more expensive manufacturing method than CM, but its employment can be justified due to number of reasons: improved part features, faster manufacturing time and lower cost. Improved part features means usually reduced mass or complex shape. However, in low volume production lower manufacturing time and lower part cost may rise to the most important characteristics.

In this paper, we present a practical feasibility model, which analyses the added value of using AM for manufacturing. The approach is demonstrated in the paper on four specific parts. They represent real industrial design tasks that are ordered from an engineering office company. These parts were manufactured by Selective Laser Meting (SLM) technology and the original design done for conventional manufacturing is also presented and used for comparison purpose.

Keywords: Design for Additive Manufacturing (DfAM), Decision making, 3D printing, Additive Manufacturing


Please sign in to your account

This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties. Privacy Policy.