Using Hidden Markov Models to Uncover Underlying States in Neuroimaging Data for a Design Ideation Task

DS 94: Proceedings of the Design Society: 22nd International Conference on Engineering Design (ICED19)

Year: 2019
Editor: Wartzack, Sandro; Schleich, Benjamin; Gon
Author: Goucher-Lambert, Kosa (1); McComb, Christopher (2)
Series: ICED
Institution: University of California, Berkeley
Section: Human behaviour in design and design cognition
DOI number: https://doi.org/10.1017/dsi.2019.193
ISSN: 2220-4342

Abstract

Recently, design researchers have begun to use neuroimaging methods (e.g., functional magnetic resonance imaging, fMRI) to understand a variety of cognitive processes relevant to design. However, common neuroimaging analysis techniques require significant assumptions relating temporal and spatial information during model formulation. In this work, we apply hidden Markov Models (HMM) in order to uncover patterns of brain activation in a design-relevant fMRI dataset. The underlying fMRI data comes from a prior research study in which participants generated solutions for twelve open-ended design problems from the literature. HMMs are generative models that are able to automatically infer the internal state characteristics of a process by observing state emissions. In this work, we demonstrate that distinct states can be extracted from the design ideation fMRI dataset, and that designers are likely to transition between a few key states. Additionally, the likelihood of occupancy within these states is different for high and low performing designers. This work opens up the door for future research to investigate the patterns of neural activation within the discovered states.

Keywords: Design cognition, Conceptual design, Human behaviour in design, Numerical methods

Download

Please sign in to your account

This site uses cookies and other tracking technologies to assist with navigation and your ability to provide feedback, analyse your use of our products and services, assist with our promotional and marketing efforts, and provide content from third parties. Privacy Policy.